scholarly journals Analysis of dominant mutations affecting muscle excitation in Caenorhabditis elegans.

Genetics ◽  
1995 ◽  
Vol 141 (3) ◽  
pp. 961-976 ◽  
Author(s):  
D J Reiner ◽  
D Weinshenker ◽  
J H Thomas

Abstract We examined mutations that disrupt muscle activation in Caenorhabditis elegans. Fifteen of 17 of these genes were identified previously and we describe new mutations in three of them. We also describe mutations in two new genes, exp-3 and exp-4. We assessed the degree of defect in pharyngeal, body-wall, egg-laying, and enteric muscle activation in animals mutant for each gene. Mutations in all 17 genes are semidominant and, in cases that could be tested, appear to be gain-of-function. Based on their phenotypes, the genes fall into three broad categories: mutations in 11 genes cause defective muscle activation, mutations in four genes cause hyperactivated muscle, and mutations in two genes cause defective activation in some muscle types and hyperactivation in others. In all testable cases, the mutations blocked response to pharmacological activators of egg laying, but did not block muscle activation by irradiation with a laser microbeam. The data suggest that these mutations affect muscle excitation, but not the capacity of the muscle fibers to contract. For most of the genes, apparent loss-of-function mutants have a grossly wild-type phenotype. These observations suggest that there is a large group of genes that function in muscle excitation that can be identified primarily by dominant mutations.

2004 ◽  
Vol 9 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Brenda R. Ellerbrock ◽  
Eileen M. Coscarelli ◽  
Mark E. Gurney ◽  
Timothy G. Geary

Caenorhabditis elegans contains 3 homologs of presenilin genes that are associated with Alzheimer s disease. Loss-of-function mutations in C. elegans genes cause a defect in egg laying. In humans, loss of presenilin-1 (PS1) function reduces amyloid-beta peptide processing from the amyloid protein precursor. Worms were screened for compounds that block egg laying, phenocopying presenilin loss of function. To accommodate even relatively high throughput screening, a semi-automated method to quantify egg laying was devised by measuring the chitinase released into the culture medium. Chitinase is released by hatching eggs, but little is shed into the medium from the body cavity of a hermaphrodite with an egg laying deficient ( egl) phenotype. Assay validation involved measuring chitinase release from wild-type C. elegans (N2 strain), sel-12 presenilin loss-of-function mutants, and 2 strains of C. elegans with mutations in the egl-36K+ channel gene. Failure to find specific presenilin inhibitors in this collection likely reflects the small number of compounds tested, rather than a flaw in screening strategy. Absent defined biochemical pathways for presenilin, this screening method, which takes advantage of the genetic system available in C. elegans and its historical use for anthelminthic screening, permits an entry into mechanism-based discovery of drugs for Alzheimer s disease. ( Journal of Biomolecular Screening 2004:147-152)


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 221-235 ◽  
Author(s):  
Alexander M van der Linden ◽  
Femke Simmer ◽  
Edwin Cuppen ◽  
Ronald H A Plasterk

Abstract The genome of Caenorhabditis elegans harbors two genes for G-protein β-subunits. Here, we describe the characterization of the second G-protein β-subunit gene gpb-2. In contrast to gpb-1, gpb-2 is not an essential gene even though, like gpb-1, gpb-2 is expressed during development, in the nervous system, and in muscle cells. A loss-of-function mutation in gpb-2 produces a variety of behavioral defects, including delayed egg laying and reduced pharyngeal pumping. Genetic analysis shows that GPB-2 interacts with the GOA-1 (homologue of mammalian Goα) and EGL-30 (homologue of mammalian Gqα) signaling pathways. GPB-2 is most similar to the divergent mammalian Gβ5 subunit, which has been shown to mediate a specific interaction with a Gγ-subunit-like (GGL) domain of RGS proteins. We show here that GPB-2 physically and genetically interacts with the GGL-containing RGS proteins EGL-10 and EAT-16. Taken together, our results suggest that GPB-2 works in concert with the RGS proteins EGL-10 and EAT-16 to regulate GOA-1 (Goα) and EGL-30 (Gqα) signaling.


Genetics ◽  
1980 ◽  
Vol 96 (1) ◽  
pp. 147-164 ◽  
Author(s):  
Iva S Greenwald ◽  
H Robert Horvitz

ABSTRACT The uncoordinated, egg-laying-defective mutation, unc-93(e1500) III, of the nematode Caenorhabditis elegans spontaneously reverts to a wild-type phenotype. We describe 102 spontaneous and mutagen-induced revertants that define three loci, two extragenic (sup-9 II and sup-10 X) and one intragenic. Genetic analysis suggests that e1500 is a rare visible allele that generates a toxic product and that intragenic reversion, resulting from the generation of null alleles of the unc-93 gene, eliminates the toxic product. We propose that the genetic properties of the unc-93 locus, including the spontaneous reversion of the e1500 mutation, indicate that unc-93 may be a member of a multigene family. The extragenic suppressors also appear to arise as the result of elimination of gene activity; these genes may encode regulatory functions or products that interact with the unc-93 gene product. Genes such as unc-93, sup-9 and sup-10 may be useful for genetic manipulations, including the generation of deficiencies and mutagen testing.


Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 765-783 ◽  
Author(s):  
M Sundaram ◽  
I Greenwald

Abstract The lin-12 gene of Caenorhabditis elegans is thought to encode a receptor which mediates cell-cell interactions required to specify certain cell fates. Reversion of the egg-laying defective phenotype caused by a hypomorphic lin-12 allele identified rare extragenic suppressor mutations in five genes, sel-1, sel-9, sel-10, sel-11 and sel(ar40) (sel = suppressor and/or enhancer of lin-12). Mutations in each of these sel genes suppress defects associated with reduced lin-12 activity, and enhance at least one defect associated with elevated lin-12 activity. None of the sel mutations cause any obvious phenotype in a wild-type background. Gene dosage experiments suggest that sel-1 and sel(ar40) mutations are reduction-of-function mutations, while sel-9 and sel-11 mutations are gain-of-function mutations. sel-1, sel-9, sel-11 and sel(ar40) mutations do not suppress amorphic lin-12 alleles, while sel-10 mutations are able to bypass partially the requirement for lin-12 activity in at least one cell fate decision. sel-1, sel-9, sel-10, sel-11 and sel(ar40) mutations are also able to suppress the maternal-effect lethality caused by a partial loss-of-function allele of glp-1, a gene that is both structurally and functionally related to lin-12. These sel genes may therefore function in both lin-12 and glp-1 mediated cell fate decisions.


2019 ◽  
Author(s):  
Naomi Shomer ◽  
Alexandre Zacharie Kadhim ◽  
Jennifer Margaret Grants ◽  
Xuanjin Cheng ◽  
Amy Fong-Yuk Poon ◽  
...  

AbstractZinc is essential for cellular functions as it is a catalytic and structural component of many proteins. In contrast, cadmium is not required in biological systems and is toxic. Zinc and cadmium levels are closely monitored and regulated as their excess causes cell stress. To maintain homeostasis, organisms induce metal detoxification gene programs through stress responsive transcriptional regulatory complexes. In Caenorhabditis elegans, the MDT-15 subunit of the evolutionarily conserved Mediator transcriptional coregulator is required to induce genes upon exposure to excess zinc and cadmium. However, the regulatory partners of MDT-15 in this response, its role in cellular and physiological stress adaptation, and the putative role mammalian for MED15 in the metal stress responses remain unknown. Here, we show that MDT-15 interacts physically and functionally with the Nuclear Hormone Receptor HIZR-1 to promote molecular, cellular, and organismal adaptation to excess metals. Using gain- and loss-of-function mutants and qPCR and reporter analysis, we find that mdt-15 and hizr-1 cooperate to induce zinc and cadmium responsive genes. Moreover, the two proteins interact physically in yeast-two-hybrid assays and this interaction is enhanced by the addition of zinc or cadmium, the former a known ligand of HIZR-1. Functionally, mdt-15 and hizr-1 mutants show defective storage of excess zinc in the gut, and at the organismal level, mdt-15 mutants are hypersensitive to zinc- and cadmium-induced reductions in egg-laying. Lastly, mammalian MDT-15 orthologs bind genomic regulatory regions of metallothionein and zinc transporter genes in a metal-stimulated fashion, and human MED15 is required to induce a metallothionein gene in lung adenocarcinoma cells exposed to cadmium. Collectively, our data show that mdt-15 and hizr-1 cooperate to regulate metal detoxification and zinc storage and that this mechanism appears to be at least partially conserved in mammals.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 197-207 ◽  
Author(s):  
Hongping Du ◽  
Martin Chalfie

Abstract To identify genes regulating the development of the six touch receptor neurons, we screened the F2 progeny of mutated animals expressing an integrated mec-2::gfp transgene that is expressed mainly in these touch cells. From 2638 mutated haploid genomes, we obtained 11 mutations representing 11 genes that affected the production, migration, or outgrowth of the touch cells. Eight of these mutations were in known genes, and 2 defined new genes (mig-21 and vab-15). The mig-21 mutation is the first known to affect the asymmetry of the migrations of Q neuroblasts, the cells that give rise to two of the six touch cells. vab-15 is a msh-like homeobox gene that appears to be needed for the proper production of touch cell precursors, since vab-15 animals lacked the four more posterior touch cells. The remaining touch cells (the ALM cells) were present but mispositioned. A similar touch cell phenotype is produced by mutations in lin-32. A more severe phenotype; i.e., animals often lacked ALM cells, was seen in lin-32 vab-15 double mutants, suggesting that these genes acted redundantly in ALM differentiation. In addition to the touch cell abnormalities, vab-15 animals variably exhibit embryonic or larval lethality, cell degenerations, malformation of the posterior body, uncoordinated movement, and defective egg laying.


Genetics ◽  
1995 ◽  
Vol 141 (2) ◽  
pp. 551-569 ◽  
Author(s):  
L Qiao ◽  
J L Lissemore ◽  
P Shu ◽  
A Smardon ◽  
M B Gelber ◽  
...  

Abstract The distal tip cell (DTC) regulates the proliferation or differentiation choice in the Caenorhabditis elegans germline by an inductive mechanism. Cell signaling requires a putative receptor in the germline, encoded b y the glp-1 gene, and a putative signal from the DTC, encoded by the lag-2 gene. Both glp-1 and lag-2 belong to multigene gene families whose members are essential for cell signaling during development of various tissues in insects and vertebrates as well as C. elegans. Relatively little is known about how these pathways regulate cell fate choice. To identify additional genes involved in the glp-1 signaling pathway, we carried out screens for genetic enhancers of glp-1. We recovered mutations in five new genes, named ego (enhancer of glp-1), and two previously identified genes, lag-1 and glp-4, that strongly enhance a weak glp-1 loss-of-function phenotype in the germline. Ego mutations cause multiple phenotypes consistent with the idea that gene activity is required for more than one aspect of germline and, in some cases, somatic development. Based on genetic experiments, glp-1 appears to act upstream of ego-1 and ego-3. We discuss the possible functional relationships among these genes in light of their phenotypes and interactions with glp-1.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Na Li ◽  
Belle W. X. Lim ◽  
Ella R. Thompson ◽  
Simone McInerny ◽  
Magnus Zethoven ◽  
...  

AbstractBreast cancer (BC) has a significant heritable component but the genetic contribution remains unresolved in the majority of high-risk BC families. This study aims to investigate the monogenic causes underlying the familial aggregation of BC beyond BRCA1 and BRCA2, including the identification of new predisposing genes. A total of 11,511 non-BRCA familial BC cases and population-matched cancer-free female controls in the BEACCON study were investigated in two sequencing phases: 1303 candidate genes in up to 3892 cases and controls, followed by validation of 145 shortlisted genes in an additional 7619 subjects. The coding regions and exon–intron boundaries of all candidate genes and 14 previously proposed BC genes were sequenced using custom designed sequencing panels. Pedigree and pathology data were analysed to identify genotype-specific associations. The contribution of ATM, PALB2 and CHEK2 to BC predisposition was confirmed, but not RAD50 and NBN. An overall excess of loss-of-function (LoF) (OR 1.27, p = 9.05 × 10−9) and missense (OR 1.27, p = 3.96 × 10−73) variants was observed in the cases for the 145 candidate genes. Leading candidates harbored LoF variants with observed ORs of 2–4 and individually accounted for no more than 0.79% of the cases. New genes proposed by this study include NTHL1, WRN, PARP2, CTH and CDK9. The new candidate BC predisposition genes identified in BEACCON indicate that much of the remaining genetic causes of high-risk BC families are due to genes in which pathogenic variants are both very rare and convey only low to moderate risk.


2021 ◽  
pp. 1-10
Author(s):  
Varvara Kanti ◽  
Lia Puder ◽  
Irina Jahnke ◽  
Philipp Maximilian Krabusch ◽  
Jan Kottner ◽  
...  

<b><i>Background and Objectives:</i></b> Gene mutations within the leptin-melanocortin signaling pathway lead to severe early-onset obesity. Recently, a phase 2 trial evaluated new pharmacological treatment options with the MC4R agonist <i>setmelanotide</i> in patients with mutations in the genes encoding proopiomelanocortin (POMC) and leptin receptor (LEPR). During treatment with <i>setmelanotide,</i> changes in skin pigmentation were observed, probably due to off-target effects on the closely related melanocortin 1 receptor (MC1R). Here, we describe in detail the findings of dermatological examinations and measurements of skin pigmentation during this treatment over time and discuss the impact of these changes on patient safety. <b><i>Methods:</i></b> In an investigator-initiated, phase 2, open-label pilot study, 2 patients with loss-of-function POMC gene mutations and 3 patients with loss-of-function variants in LEPR were treated with the MC4R agonist <i>setmelanotide</i>. Dermatological examination, dermoscopy, whole body photographic documentation, and spectrophotometric measurements were performed at screening visit and approximately every 3 months during the course of the study. <b><i>Results:</i></b> We report the results of a maximum treatment duration of 46 months. Skin pigmentation increased in all treated patients, as confirmed by spectrophotometry. During continuous treatment, the current results indicate that elevated tanning intensity levels may stabilize over time. Lips and nevi also darkened. In red-haired study participants, hair color changed to brown after initiation of <i>setmelanotide</i> treatment. <b><i>Discussion:</i></b> <i>Setmelanotide</i> treatment leads to skin tanning and occasionally hair color darkening in both POMC- and LEPR-deficient patients. No malignant skin changes were observed in the patients of this study. However, the results highlight the importance of regular skin examinations before and during MC4R agonist treatment.


Genetics ◽  
1992 ◽  
Vol 130 (4) ◽  
pp. 771-790 ◽  
Author(s):  
D G Morton ◽  
J M Roos ◽  
K J Kemphues

Abstract Specification of some cell fates in the early Caenorhabditis elegans embryo is mediated by cytoplasmic localization under control of the maternal genome. Using nine newly isolated mutations, and two existing mutations, we have analyzed the role of the maternally expressed gene par-4 in cytoplasmic localization. We recovered seven new par-4 alleles in screens for maternal effect lethal mutations that result in failure to differentiate intestinal cells. Two additional par-4 mutations were identified in noncomplementation screens using strains with a high frequency of transposon mobility. All 11 mutations cause defects early in development of embryos produced by homozygous mutant mothers. Analysis with a deficiency in the region indicates that it33 is a strong loss-of-function mutation. par-4(it33) terminal stage embryos contain many cells, but show no morphogenesis, and are lacking intestinal cells. Temperature shifts with the it57ts allele suggest that the critical period for both intestinal differentiation and embryo viability begins during oogenesis, about 1.5 hr before fertilization, and ends before the four-cell stage. We propose that the primary function of the par-4 gene is to act as part of a maternally encoded system for cytoplasmic localization in the first cell cycle, with par-4 playing a particularly important role in the determination of intestine. Analysis of a par-4; par-2 double mutant suggests that par-4 and par-2 gene products interact in this system.


Sign in / Sign up

Export Citation Format

Share Document