scholarly journals Review of How Genetic Research on Segmental Progeroid Syndromes Has Documented Genomic Instability as a Hallmark of Aging But Let Us Now Pursue Antigeroid Syndromes!

Author(s):  
George M Martin ◽  
Fuki M Hisama ◽  
Junko Oshima

Abstract The purpose of this early contribution to the new Fellows Forum of this pioneering journal for what is now called Geroscience is to provide an example of how the author’s interest in using the emerging tools of human genetics has led to strong support for one of the hallmarks of aging—Genomic Instability. We shall also briefly review our emerging interests in the genetic analysis of what we have called Antigeroid Syndromes. While there has been significant progress in that direction via genetic studies of centenarians, the search for genetic pathways that make individuals unusually resistant or resilient to the ravages of specific geriatric disorders has been comparatively neglected. We refer to these disorders as Unimodal Antigeroid Syndromes. It is our hope that our young colleagues will consider research efforts in that direction.

Author(s):  
Eberhard Passarge

AbstractGenetics evolved as a field of science after 1900 with new theories being derived from experiments obtained in fruit flies, bacteria, and viruses. This personal account suggests that the origins of human genetics can best be traced to the years 1949 to 1959. Several genetic scientific advances in genetics in 1949 yielded results directly relating to humans for the first time, except for a few earlier observations. In 1949 the first textbook of human genetics was published, the American Journal of Human Genetics was founded, and in the previous year the American Society of Human Genetics. In 1940 in Britain a textbook entitled Introduction to Medical Genetics served as a foundation for introducing genetic aspects into medicine. The introduction of new methods for analyzing chromosomes and new biochemical assays using cultured cells in 1959 and subsequent years revealed that many human diseases, including cancer, have genetic causes. It became possible to arrive at a precise cause-related genetic diagnosis. As a result the risk of occurrence or re-occurrence of a disease within a family could be assessed correctly. Genetic counseling as a new concept became a basis for improved patient care. Taken together the advances in medically orientated genetic research and patient care since 1949 have resulted in human genetics being both, a basic medical and a basic biological science. Prior to 1949 genetics was not generally viewed in a medical context. Although monogenic human diseases were recognized in 1902, their occurrence and distribution were considered mainly at the population level.


PEDIATRICS ◽  
1970 ◽  
Vol 46 (3) ◽  
pp. 489-489
Author(s):  
Park S. Gerald

If you are a medical student, house officer, or practicing physician, unversed in human genetics but wanting a quick orientation, then this may be the book for you. It is brief, inexpensive, and gratifyingly up-to-date. In the 5 years since the first edition of this small book, there have been many important developments in human genetics—the use of hybrid cells for genetic analysis, the discovery of multiple structural genes for the Y chain of Hgb F, appreciation of the frequency of the XYY syndrome, the use of amniocentesis for antenatal diagnosis, and so forth.


1994 ◽  
Vol 14 (10) ◽  
pp. 6789-6796 ◽  
Author(s):  
J Tu ◽  
M Carlson

We cloned the GLC7/DIS2S1 gene by complementation of the cid1-226 mutation, which relieves glucose repression in Saccharomyces cerevisiae. GLC7 encodes the catalytic subunit of type 1 protein phosphatase (PP1). Genetic analysis and sequencing showed that cid1-226 is an allele of GLC7, now designated glc7-T152K, which alters threonine 152 to lysine. We also show that the glc7-1 and glc7-T152K alleles cause distinct phenotypes: glc7-1 causes a severe defect in glycogen accumulation but does not relieve glucose repression, whereas glc7-T152K does not prevent glycogen accumulation. These findings are discussed in light of evidence that interaction with different regulatory or targeting subunits directs the participation of PP1 in diverse cellular regulatory mechanisms. Finally, genetic studies suggest that PP1 functions antagonistically to the SNF1 protein kinase in the regulatory response to glucose.


Author(s):  
E. D. Kasyanov ◽  
G. E. Maso ◽  
A. O. Kibitov

Affective disorders (recurrent depressive disorder and bipolar affective disorder) are multifactorial and polygenic diseases, which suggests the involvement of multiple neurobiological mechanisms. The phenotype of affective disorders is a heterogeneous group of clinically similar psychopathological symptoms, which also makes it difficult to detect potential biomarkers and new therapeutic targets. To study families at high risk of developing affective disorders using both clinical and molecular genetic approaches can help to study the neurobiological basis of depressive conditions, as well as to identify endophenotypes of affective disorders. The most important criterion for an endophenotype is its heritability, which can be proved only within the framework of the family design of the study. Comprehensive clinical and molecular genetic studies based on family design have the best prospects.


2013 ◽  
Vol 25 (1) ◽  
pp. 175-191 ◽  
Author(s):  
Caroline W. Oppenheimer ◽  
Benjamin L. Hankin ◽  
Jessica L. Jenness ◽  
Jami F. Young ◽  
Andrew Smolen

AbstractGene–environment correlations (rGE) have been demonstrated in behavioral genetic studies, but rGE have proven elusive in molecular genetic research. Significant gene–environment correlations may be difficult to detect because potential moderators could reduce correlations between measured genetic variants and the environment. Molecular genetic studies investigating moderated rGE are lacking. This study examined associations between child catechol-O-methyltransferase genotype and aspects of positive parenting (responsiveness and warmth), and whether these associations were moderated by parental personality traits (neuroticism and extraversion) among a general community sample of third, sixth, and ninth graders (N = 263) and their parents. Results showed that parent personality traits moderated the rGE association between youths' genotype and coded observations of positive parenting. Parents with low levels of neuroticism and high levels of extraversion exhibited greater sensitive responsiveness and warmth, respectively, to youth with the valine/valine genotype. Moreover, youth with this genotype exhibited lower levels of observed anger. There was no association between the catechol-O-methyltransferase genotype and parenting behaviors for parents high on neuroticism and low on extraversion. Findings highlight the importance of considering moderating variables that may influence child genetic effects on the rearing environment. Implications for developmental models of maladaptive and adaptive child outcomes, and interventions for psychopathology, are discussed within a developmental psychopathology framework.


CNS Spectrums ◽  
2006 ◽  
Vol 11 (12) ◽  
pp. 931-939 ◽  
Author(s):  
Daniela S.S. Lobo ◽  
James L. Kennedy

ABSTRACTBehavioral addictions are considered as the repetitive occurrence of impulsive behaviors without consideration of their potential negative consequences. These addictions represent an increasing cost to society and are an important new field of research in psychiatric genetics. There has been a growing body of evidence on the familial aggregation and genetic influences on the development of behavioral addictions and mainly on pathological gambling. The aim of this article is to critically review findings of family and molecular genetic studies on behavioral addictions, focusing on pathological gambling and commenting on other disorders where appropriate. This review provides a comprehensive approach to genetic studies on behavioral addiction and points out the necessity of expanding the genetic research in this field. Future directions for genetic studies in this field are also discussed.


Author(s):  
Antonio Regalado

Genetic research is moving faster than a nematode poked by a platinum needle. Every week, the scientific journals report a score of new gene discoveries made in mice, worms, and men. How can a science journalist cover it all? It's hopeless, of course. So one thing I always keep in mind is it's often the methods or scientific tools behind these molecular discoveries, not the discoveries themselves, that present the best story possibilities. Examples of topics for such “tool stories” include DNA chips, proteomics, and new imaging technologies like the green-fluorescent protein used to make zebrafish and other laboratory critters glow. In writing about the technologies that drive biological research, I've found a formula that has worked well for me, time and again. Of course, not every story fits the same mold, and the best ones break it. But it's important to be familiar with how a tool story typically comes to be, and how to write one. I like to think about biology as a big onion that's rapidly being peeled. There are tens of thousands of biologists peeling away every day, figuring out all of life's working parts. But I never saw much sense in inspecting every peel for its news potential. (And some editors I know refer dismissively to the latest uncovering of a gene for heart attack or schizophrenia as “gene-of-the-week” stories.) It's better, sometimes, to focus on the new techniques and ideas for peeling the onion. Tool stories are big-picture stories that can be newsy, but the trends tend to have a long shelf life. They endure through numerous news cycles, and ultimately nearly every outlet in the journalistic food chain will cover the big ones. Your decision is when to catch the wave. Some reporters put a big emphasis on being first, but others will be content to watch the story unfold and cover their piece of it when it's right for whatever market they happen to be writing for. Either way, a tale of how a new technology is changing biological research is a great way to teach your readers—and yourself—about how science really works.


Author(s):  
Rebecca Dresser

This chapter focuses on subject-centered developments in genetic research. Modern genetic research requires scientists to collect, store, and study DNA samples and health information from thousands of people. In the past, researchers have been allowed to use DNA samples and information without consent. Researchers have not been required to explain study results to subjects, nor have they been required to compensate people who contribute samples and health information to genetic studies. Experts developed these practices without input from the people whose contributions are essential to the genetic research enterprise. A growing amount of evidence shows that many research subjects and prospective subjects disagree with these traditional approaches. For ethical and practical reasons, subjects should have a greater role in determining how genetic research is conducted.


2007 ◽  
Vol 32 (3) ◽  
pp. 190-206 ◽  
Author(s):  
Matthew J. Stowe ◽  
H. Rutherford Turnbull ◽  
Ray Pence ◽  
Jennifer Rack ◽  
Suzanne Schrandt ◽  
...  

This article reports concerns among disability community members that the implications of genetic research will be driven by mistaken beliefs about genetics and negative attitudes toward disability as identified in a qualitative study funded by the National Human Genome Research Institute. In addition to reporting the nature and the context of disability community concerns related to perceptions of disability and of human genetics, the authors discuss the historic role of attitudes toward disability and science in popularizing eugenics in early 20th century America as evidence of the seriousness of these concerns.


Sign in / Sign up

Export Citation Format

Share Document