scholarly journals Universal DNA Methylation Age Across Mammalian Tissues

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 412-412
Author(s):  
Zhe Fei ◽  
Ken Raj ◽  
Steve Horvath ◽  
Ake Lu

Abstract Aging is often perceived as a degenerative process caused by random accrual of cellular damage over time. In spite of this, age can be accurately estimated by epigenetic clocks based on DNA methylation profiles from almost any tissue of the body. Since such pan-tissue epigenetic clocks have been successfully developed for several different species, it is difficult to ignore the likelihood that a defined and shared mechanism instead, underlies the aging process. To address this, we generated over 10,000 methylation arrays, each profiling up to 37,000 cytosines in highly-conserved stretches of DNA, from over 59 tissue-types derived from 128 mammalian species. From these, we identified and characterized specific cytosines, whose methylation levels change with age across mammalian species. Genes associated with these cytosines are greatly enriched in mammalian developmental processes and implicated in age-associated diseases. From the methylation profiles of these age-related cytosines, we successfully constructed three highly accurate universal mammalian clocks for eutherians, and one universal clock for marsupials. The universal clocks for eutherians are similarly accurate for estimating ages (r>0.96) of any mammalian species and tissue with a single mathematical formula. Collectively, these new observations support the notion that aging is indeed evolutionarily conserved and coupled to developmental processes across all mammalian species - a notion that was long-debated without the benefit of this new and compelling evidence.

2021 ◽  
Author(s):  
◽  
Ake T. Lu ◽  
Zhe Fei ◽  
Amin Haghani ◽  
Todd R. Robeck ◽  
...  

ABSTRACTAging is often perceived as a degenerative process caused by random accrual of cellular damage over time. In spite of this, age can be accurately estimated by epigenetic clocks based on DNA methylation profiles from almost any tissue of the body. Since such pan-tissue epigenetic clocks have been successfully developed for several different species, it is difficult to ignore the likelihood that a defined and shared mechanism instead, underlies the aging process. To address this, we generated 10,000 methylation arrays, each profiling up to 37,000 cytosines in highly-conserved stretches of DNA, from over 59 tissue-types derived from 128 mammalian species. From these, we identified and characterized specific cytosines, whose methylation levels change with age across mammalian species. Genes associated with these cytosines are greatly enriched in mammalian developmental processes and implicated in age-associated diseases. From the methylation profiles of these age-related cytosines, we successfully constructed three highly accurate universal mammalian clocks for eutherians, and one universal clock for marsupials. The universal clocks for eutherians are similarly accurate for estimating ages (r>0.96) of any mammalian species and tissue with a single mathematical formula. Collectively, these new observations support the notion that aging is indeed evolutionarily conserved and coupled to developmental processes across all mammalian species - a notion that was long-debated without the benefit of this new and compelling evidence.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2660-2660
Author(s):  
Ying Liang

The aging of hematopoietic stem cells (HSCs) contributes to the aging of blood system and perhaps the whole organism. The aging process is coordinately determined by both genetic and epigenetic factors, and demonstrates inter-individual variations. We used high-throughput sequencing methods to study the age-dependent changes of genome-wide DNA methylation and gene expression patterns in HSCs of C57BL/6 (B6) and DBA/2 mouse strains, which have shown natural variations in HSC aging process. We observed global age-associated decrease of DNA methylation in both strains, but D2 HSCs have a stronger loss of epigenetic control than B6 stem cells during aging. Majority age-related changes of DNA methylation occur from young to mid-aged stages. We identified stable strain-specific differentially methylated regions (DMRs) that overlap with cis-eQTLs. Moreover, transcription factor binding site motifs are more likely to be disrupted in the DMRs, suggesting the potential impact of genetic variations on epigenetic regulation of HSC aging. We further demonstrated that strain-specific DMRs have more profound effects on the aging of B6 HSCs than D2 stem cells. Transposons are differentially regulated by the DMRs in the two strains, in which D2 HSCs are prone to transposon insertion. This study comprehensively investigated the effects of natural genetic and epigenetic variations on HSC aging. Loss of DNA methylation is an epigenetic signature of stem cell aging, and DNA methylation variations correlates with genetic variations, both contributing to inter-individual differences in stem cell and perhaps organismal aging. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 50 (6) ◽  
pp. 1504-1512
Author(s):  
Güler ÖZTÜRK ◽  
Kazime Gonca AKBULUT ◽  
Şevin GÜNEY

The aim of this review is to summarize current studies on the relationship between melatonin and aging. Nowadays, age-related diseases come into prominence, and identifying age-related changes and developing proper therapeutic approaches are counted as some of the major issues regarding community health. Melatonin is the main hormone of the pineal gland. Melatonin is known to influence many biological processes in the body, including circadian rhythms, the immune system, and neuroendocrine and cardiovascular functions.Melatoninrhythms also reflect the biological process of aging. Aging is an extremely complex and multifactorial process. Melatonin levels decline considerably with aging and its decline is associated with several age-related diseases. Aging is closely associated with oxidative damage and mitochondrial dysfunction. Free radical reactions initiated by the mitochondria constitute the inherent aging process. Melatonin plays a pivotal role in preventing age-related oxidative stress. Coronavirus disease 2019 (COVID-19) fatality rates increase with chronic diseases and age, where melatonin levels decrease. For this reason, melatonin supplementation in elderly could be beneficial in COVID-19 treatment. Therefore, studies on the usage of melatonin in COVID-19 treatment are needed.


2019 ◽  
Vol 25 (39) ◽  
pp. 4139-4149 ◽  
Author(s):  
Francesco Guarasci ◽  
Patrizia D'Aquila ◽  
Alberto Montesanto ◽  
Andrea Corsonello ◽  
Dina Bellizzi ◽  
...  

: Patterns of DNA methylation, the best characterized epigenetic modification, are modulated by aging. In humans, different studies at both site-specific and genome-wide levels have reported that modifications of DNA methylation are associated with the chronological aging process but also with the quality of aging (or biological aging), providing new perspectives for establishing powerful biomarkers of aging. : In this article, the role of DNA methylation in aging and longevity has been reviewed by analysing literature data about DNA methylation variations occurring during the lifetime in response to environmental factors and genetic background, and their association with the aging process and, in particular, with the quality of aging. Special attention has been devoted to the relationship between nuclear DNA methylation patterns, mitochondrial DNA epigenetic modifications, and longevity. Mitochondrial DNA has recently been reported to modulate global DNA methylation levels of the nuclear genome during the lifetime, and, in spite of the previous belief, it has been found to be the target of methylation modifications. : Analysis of DNA methylation profiles across lifetime shows that a remodeling of the methylome occurs with age and/or with age-related decline. Thus, it can be an excellent biomarker of aging and of the individual decline and frailty status. The knowledge about the mechanisms underlying these modifications is crucial since it might allow the opportunity for targeted treatment to modulate the rate of aging and longevity.


2010 ◽  
pp. 327-344
Author(s):  
Jörg J. Goronzy ◽  
Guangjin Li ◽  
Cornelia M. Weyand

2020 ◽  
Author(s):  
Natalia A. Prado ◽  
Janine L. Brown ◽  
Joseph A. Zoller ◽  
Amin Haghani ◽  
Mingjia Yao ◽  
...  

ABSTRACTAge-associated DNA-methylation profiles have been used successfully to develop highly accurate biomarkers of age (“epigenetic clocks”) in humans, mice, dogs, and other species. Here we present epigenetic clocks for African and Asian elephants. These clocks were developed using novel DNA methylation profiles of 140 elephant blood samples of known age, at loci that are highly conserved between mammalian species, using a custom Infinium array (HorvathMammalMethylChip40). We present epigenetic clocks for Asian elephants (Elephas maximus), African elephants (Loxodonta africana), and both elephant species combined. Two additional human-elephant clocks were constructed by combing human and elephant samples. Epigenome-wide association studies identified elephant age-related CpGs and their proximal genes. The products of these genes play important roles in cellular differentiation, organismal development, metabolism, and circadian rhythms. Intracellular events observed to change with age included the methylation of bivalent chromatin domains, targets of polycomb repressive complexes, and TFAP2C binding sites. These readily available epigenetic clocks can be used for elephant conservation efforts where accurate estimates of age are needed to predict demographic trends.


Author(s):  
Antero Salminen ◽  
Kai Kaarniranta ◽  
Anu Kauppinen

Abstract Background The insulin/IGF-1 signaling pathway has a major role in the regulation of longevity both in Caenorhabditis elegans and mammalian species, i.e., reduced activity of this pathway extends lifespan, whereas increased activity accelerates the aging process. The insulin/IGF-1 pathway controls protein and energy metabolism as well as the proliferation and differentiation of insulin/IGF-1-responsive cells. Insulin/IGF-1 signaling also regulates the functions of the innate and adaptive immune systems. The purpose of this review was to elucidate whether insulin/IGF-1 signaling is linked to immunosuppressive STAT3 signaling which is known to promote the aging process. Methods Original and review articles encompassing the connections between insulin/IGF-1 and STAT3 signaling were examined from major databases including Pubmed, Scopus, and Google Scholar. Results The activation of insulin/IGF-1 receptors stimulates STAT3 signaling through the JAK and AKT-driven signaling pathways. STAT3 signaling is a major activator of immunosuppressive cells which are able to counteract the chronic low-grade inflammation associated with the aging process. However, the activation of STAT3 signaling stimulates a negative feedback response through the induction of SOCS factors which not only inhibit the activity of insulin/IGF-1 receptors but also that of many cytokine receptors. The inhibition of insulin/IGF-1 signaling evokes insulin resistance, a condition known to be increased with aging. STAT3 signaling also triggers the senescence of both non-immune and immune cells, especially through the activation of p53 signaling. Conclusions Given that cellular senescence, inflammaging, and counteracting immune suppression increase with aging, this might explain why excessive insulin/IGF-1 signaling promotes the aging process.


2019 ◽  
Author(s):  
Yuancheng Lu ◽  
Anitha Krishnan ◽  
Benedikt Brommer ◽  
Xiao Tian ◽  
Margarita Meer ◽  
...  

Ageing is a degenerative process leading to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise, which disrupts youthful gene expression patterns that are required for cells to function optimally and recover from damage1–3. Changes to DNA methylation patterns over time form the basis of an ‘ageing clock’4, 5, but whether old individuals retain information to reset the clock and, if so, whether this would improve tissue function is not known. Of all the tissues in the body, the central nervous system (CNS) is one of the first to lose regenerative capacity6, 7. Using the eye as a model tissue, we show that expression of Oct4, Sox2, and Klf4 genes (OSK) in mice resets youthful gene expression patterns and the DNA methylation age of retinal ganglion cells, promotes axon regeneration after optic nerve crush injury, and restores vision in a mouse model of glaucoma and in normal old mice. This process, which we call recovery of information via epigenetic reprogramming or REVIVER, requires the DNA demethylases Tet1 and Tet2, indicating that DNA methylation patterns don’t just indicate age, they participate in ageing. Thus, old tissues retain a faithful record of youthful epigenetic information that can be accessed for functional age reversal.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 676-676
Author(s):  
Amin Haghani ◽  
Steve Horvath

Abstract The comparative cross-species analysis is a powerful tool to resolve the mysteries of evolution and phenotypic disparities among animals. This is the first network analysis of 10,000 DNA methylome data from 176 mammalian species to identify co-methylation modules that relate to individual (age, sex, tissue type) and species characteristics (e.g. phylogenetic order, maximum lifespan, adult weight). The unexpected correlation between DNA methylation and species were sufficiently strong to allow the construction of phyloepigenetic trees that parallel the phylogenetic tree. Weighted correlation network analysis identified 55 distinct co-methylation modules, i.e. sets of highly correlated CpGs. 31 of these modules are readily interpretable in terms of their relationship to age, maximum lifespan, tissue type etc. An age-related module was perturbed by gold standard anti-aging interventions in mice such as caloric restriction or growth hormone receptor knock outs. Our module-based analysis greatly enhances our biological understanding of age-related changes in DNA methylation across many species.


2021 ◽  
Vol 66 (5) ◽  
pp. 59-65
Author(s):  
M. Vorontsova ◽  
A. Obrezan ◽  
A. Obrezan

In connection with the increase in the average age of the world's population, the problem of preventing premature aging and the treatment of age-related diseases is coming to the fore. The main direction in the implementation of this goal is to influence the key molecular mechanisms of aging in order to suppress pathological processes and activate the defense systems of the cell and the body as a whole. In order to solve this daunting task, it is necessary to have in the arsenal not only various means of intervention in the aging process, but also diagnostic methods that would allow to fully verify these processes and evaluate the effectiveness of medical interventions.


Sign in / Sign up

Export Citation Format

Share Document