scholarly journals The latitude-dependent autoimmune disease risk genes ZMIZ1 and IRF8 regulate mononuclear phagocytic cell differentiation in response to vitamin D

2018 ◽  
Author(s):  
Grant P Parnell ◽  
Stephen D Schibeci ◽  
Nicole L Fewings ◽  
Ali Afrasiabi ◽  
Samantha P L Law ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Gerry K. Schwalfenberg

This paper looks at the environmental role of vitamin D and solar radiation as risk reduction factors in autoimmune disease. Five diseases are considered: multiple sclerosis, type 1 diabetes, rheumatoid arthritis, autoimmune disease of the thyroid, and inflammatory bowel disease. Clinical relevant studies and factors that may indicate evidence that autoimmune disease is a vitamin D-sensitive disease are presented. Studies that have resulted in prevention or amelioration of some autoimmune disease are discussed. An example of the utility of supplementing vitamin D in an unusual autoimmune disease, idiopathic thrombocytic purpura, is presented.


Breast Care ◽  
2021 ◽  
pp. 1-9
Author(s):  
Kerstin Rhiem ◽  
Bernd Auber ◽  
Susanne Briest ◽  
Nicola Dikow ◽  
Nina Ditsch ◽  
...  

<b><i>Background:</i></b> The German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) has established a multigene panel (TruRisk®) for the analysis of risk genes for familial breast and ovarian cancer. <b><i>Summary:</i></b> An interdisciplinary team of experts from the GC-HBOC has evaluated the available data on risk modification in the presence of pathogenic mutations in these genes based on a structured literature search and through a formal consensus process. <b><i>Key Messages:</i></b> The goal of this work is to better assess individual disease risk and, on this basis, to derive clinical recommendations for patient counseling and care at the centers of the GC-HBOC from the initial consultation prior to genetic testing to the use of individual risk-adapted preventive/therapeutic measures.


Author(s):  
Samantha P. L. Law ◽  
Prudence N. Gatt ◽  
Stephen D. Schibeci ◽  
Fiona C. McKay ◽  
Steve Vucic ◽  
...  

AbstractAlthough genetic and epidemiological evidence indicates vitamin D insufficiency contributes to multiple sclerosis (MS), and serum levels of vitamin D increase on treatment with cholecalciferol, recent metanalyses indicate that this vitamin D form does not ameliorate disease. Genetic variation in genes regulating vitamin D, and regulated by vitamin D, affect MS risk. We evaluated if the expression of vitamin D responsive MS risk genes could be used to assess vitamin D response in immune cells. Peripheral blood mononuclear cells (PBMCs) were isolated from healthy controls and people with MS treated with dimethyl fumarate. We assayed changes in expression of vitamin D responsive MS risk (VDRMS) genes in response to treatment with 25 hydroxy vitamin D in the presence or absence of inflammatory stimuli. Expression of CYP24A1 and other VDRMS genes was significantly altered in PBMCs treated with vitamin D in the homeostatic and inflammatory models. Gene expression in MS samples had similar responses to controls, but lower initial expression of the risk genes. Vitamin D treatment abrogated these differences. Expression of CYP24A1 and other MS risk genes in blood immune cells indicate vitamin D response and could enable assessment of immunological response to vitamin D in clinical trials and on therapy.


2020 ◽  
Vol 10 (6) ◽  
pp. 315-324
Author(s):  
Fahmi Radityamurti ◽  
Fauzan Herdian ◽  
Tiara Bunga Mayang Permata ◽  
Handoko Handoko ◽  
Henry Kodrat ◽  
...  

Introduction: Vitamin D has been shown to have anti-cancer properties such as antioxidants, anti-proliferative, and cell differentiation. The property of vitamin D as an anticancer agent triggers researchers to find out whether vitamin D is useful as a radiosensitizer. Multiple studies have been carried out on cell lines in various types of cancer, but the benefits of vitamin D as a radiosensitizer still controversial. This paperwork aims to investigate the utilization of Vitamin D3 (Calcitriol) as radiosensitizer in various cell line through literature review.Methods: A systematic search of available medical literature databases was performed on in-vitro studies with Vitamin D as a radiosensitizer in all types of cell lines. A total of 11 in-vitro studies were evaluated.Results: Nine studies in this review showed a significant effect of Vitamin D as a radiosensitizer agent by promoting cytotoxic autophagy, increasing apoptosis, inhibiting of cell survival and proliferation, promoting gene in ReIB inhibition, inducing senescene and necrosis. The two remaining studies showed no significant effect in the radiosensitizing mechanism of Vitamin D due to lack of evidence in-vitro settings.Conclusion: Vitamin D have anticancer property and can be used as a radiosensitizer by imploring various mechanism pathways in various cell lines. Further research especially in-vivo settings need to be evaluated.


Sign in / Sign up

Export Citation Format

Share Document