Playing with Power: Mechanisms of Energy Flow in Organismal Movement

2019 ◽  
Vol 59 (6) ◽  
pp. 1511-1514 ◽  
Author(s):  
Michael V Rosario ◽  
Jeffrey P Olberding ◽  
Stephen M Deban

Abstract Across multiple evolutionary clades and size scales, organismal movement requires controlling the flow of energy through the body to enhance certain functions. Whether energy is released or absorbed by the organism, proper function hinges on the ability to manipulate both where and when energy is transferred. For example, both power amplification and power attenuation rely on the use of springs for the intermediate storage of energy between the body and the environment; but variation in function is the result of the path and timing of energy flow. In this symposium, we have invited speakers that demonstrate the diversity of mechanisms used to control the flow of energy through the body and into the environment. By bringing together researchers investigating movements in the context of power and energy flow, the major goal of this symposium is to facilitate fresh perspectives on the unifying mechanical themes of energy transfer in organismal movement.

2021 ◽  
pp. 1-4
Author(s):  
Kritika Thakur ◽  
Sangeeta H Toshikahne ◽  
Ravi Sahu ◽  
Rinal Patel

Ayurveda explains that our health is dependent not only on what we eat, but also on how we digest. The most vitamin-fortied diet or healthy food is considered unhealthy if our body isn't able to properly digest, absorb, and assimilate the food. Acc. to ayurvedic classics “Sarve Roga Api Mandagni” means all diseases in the body are caused due to mandagni (due to improper functioning of agni). In other words, the proper function of agni is important for strong vyadhikshamatva shakti (immunity) or bala Agni plays an important role in digestion of food. Mandagni leads to Ama formation which is the root cause of Roga. Utpatti. There are so many diseases originating because of Ama which are grouped under Ampradoshaja Vikara. Deepana and Pachana are considered under the heading of Shamanaushadhis. It is the rst line of treatment selected in order to overcome Ampradoshaja Vikaras. Thus, the treatment is mainly targeted towards the Agni thereby correcting the Ama. Deepana and Pachana are aimed in correcting the Agni which further helps in the proper digestion of Sneha and proper mobilization of dosha from shakha to kostha


2014 ◽  
Vol 10 (6) ◽  
pp. 20140261 ◽  
Author(s):  
John P. DeLong

The parameters that drive population dynamics typically show a relationship with body size. By contrast, there is no theoretical or empirical support for a body-size dependence of mutual interference, which links foraging rates to consumer density. Here, I develop a model to predict that interference may be positively or negatively related to body size depending on how resource body size scales with consumer body size. Over a wide range of body sizes, however, the model predicts that interference will be body-size independent. This prediction was supported by a new dataset on interference and consumer body size. The stabilizing effect of intermediate interference therefore appears to be roughly constant across size, while the effect of body size on population dynamics is mediated through other parameters.


Author(s):  
Horia Andrei ◽  
Mihai Iordache ◽  
Paul Cristian Andrei ◽  
Marilena Stanculescu ◽  
Sorin Deleanu ◽  
...  

2019 ◽  
Vol 205 ◽  
pp. 09034
Author(s):  
Minjung Son ◽  
Alberta Pinnola ◽  
Roberto Bassi ◽  
Gabriela S. Schlau-Cohen

We utilise ultrabroadband two-dimensional electronic spectroscopy to map out pathways of energy flow in LHCII across the entire visible region. In addition to the well-established, low-lying chlorophyll Qy bands, our results reveal additional pathways of energy relaxation on the higher-lying excited states involving the S2 energy levels of carotenoids, including ultrafast carotenoid-to-chlorophyll energy transfer on 90-150 fs timescales.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 236 ◽  
Author(s):  
Adrian F. Gombart ◽  
Adeline Pierre ◽  
Silvia Maggini

Immune support by micronutrients is historically based on vitamin C deficiency and supplementation in scurvy in early times. It has since been established that the complex, integrated immune system needs multiple specific micronutrients, including vitamins A, D, C, E, B6, and B12, folate, zinc, iron, copper, and selenium, which play vital, often synergistic roles at every stage of the immune response. Adequate amounts are essential to ensure the proper function of physical barriers and immune cells; however, daily micronutrient intakes necessary to support immune function may be higher than current recommended dietary allowances. Certain populations have inadequate dietary micronutrient intakes, and situations with increased requirements (e.g., infection, stress, and pollution) further decrease stores within the body. Several micronutrients may be deficient, and even marginal deficiency may impair immunity. Although contradictory data exist, available evidence indicates that supplementation with multiple micronutrients with immune-supporting roles may modulate immune function and reduce the risk of infection. Micronutrients with the strongest evidence for immune support are vitamins C and D and zinc. Better design of human clinical studies addressing dosage and combinations of micronutrients in different populations are required to substantiate the benefits of micronutrient supplementation against infection.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-32
Author(s):  
Mateusz Adamiak ◽  
Arjun Thapa ◽  
Kamila Bujko ◽  
Valentina Pensato ◽  
Magdalena Kucia ◽  
...  

Background. Adenosine triphosphate (ATP) is an important nucleotide involved in intracellular energy transfer, but when released from activated cells into the extracellular space as extracellular ATP (eATP) it becomes a crucial mediator of the purinergic signaling network. Purinergic receptors for extracellular nucleotides (EXNs), expressed on the surface of all cells in the body, are represented by the P1, P2X, and P2Y receptor families, which are among the most abundant receptors in living organisms. Of all these receptors, the P2X receptor family is most highly specific for eATP signaling and consists of seven members (P2X1-7). We found that human and murine hematopoietic stem progenitor cells (HSPCs) highly express two members of this family, the P2X4 and P2X7 receptors. We recently reported that both are involved in optimal mobilization of HSPCs by activating Nlrp3 inflammasome (Leukemia 2020 Jun;34(6):1512-1523 and Stem Cell Rev Rep. 2019 Jun;15(3):391-403). We also reported that the P2X7 receptor expressed on the surface of HSPCs facilitates the homing and engraftment of HSPCs by increasing their responsiveness to SDF-1 gradients. Interestingly, it has been proposed that both receptors heterodimerize to exert optimal activity. Hypothesis. Since, the P2X4 and P2X7 receptors show several similar biological effects in non-hematopoietic cells, we became interested in the role of the P2X4 receptor in homing and engraftment of HSPCs.Materials and Methods. To test this hypothesis, we isolated SKL cells from P2X4-KO mice and tested them for migration in response to BM chemoattractants, including the major homing factor SDF-1. Next, we tested the short- and long-term homing of mouse BM cells after exposure to the P2X4-specific inhibitor PBS12054 in normal mice by evaluating the number of donor-derived PKH67-labeled BMMNCs and CFU-GM clonogenic progenitors isolated from recipient mouse BM 24 hours after transplantation as well as the number of day-12 colony-forming units in spleen (CFU-S) and day-12 CFU-GM clonogenic progenitors. These data were confirmed in transplant studies employing P2X4-KO bone marrow cells. In parallel, we also evaluated the recovery kinetics of leukocytes and blood platelets in the PB of transplanted animals. Finally, we also perturbed P2X4 expression in transplanted mice with PBS12054 and studied the effect on homing and engraftment of normal BM cells, as described above. Results. We found that P2X4-KO mouse HSPCs have a defect in migration in response to BM chemoattractants involved in BM homing, including the major homing factor SDF-1 as well as the supportive factors S1P and eATP. Perturbation of P2X4 expression on the surface of HSPCs led to significant defective homing and engraftment of HSPCs. Moreover, inhibition of P2X4 in the recipient mouse BM microenvironment had a similar effect. Conclusions. We identified for the first time the role of eATP-P2X4 signaling in the homing and engraftment of HSPCs. To explain this result, we conclude that the eATP-P2X4 axis is, like the eATP-P2X7 axis, a potent activator of Nlrp3 inflammasomes and that defective eATP-P2X4 signaling impairs the role of purinergic signaling and the Nlrp3 inflammasome in homing and engraftment. Moreover, our results show a similar homing and engraftment phenotype for P2X4-KO mice as that seen in P2X7-KO animals, which provides functional support for the proposed dimerization of P2X7 with P2X4 receptors and the necessary presence of both receptors for optimal function. This question is currently being addressed in our laboratory by employing the fluorescence resonance energy transfer (FRET) technique. Finally, we provide additional evidence that, in addition to SDF-1 and S1P, eATP and purinergic signaling involving P2X4 and P2X7 receptors is an important and underappreciated regulator of HSPC trafficking and a potential target for molecular optimization of both processes. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Andrew C. Benniston ◽  
Anthony Harriman ◽  
Songjie Yang

Here, we recognize the growing significance of miniaturized devices as medical diagnostic tools and highlight the need to provide a convenient means of powering such instruments when implanted into the body. One of the most promising approaches to this end involves using a light-collection facility to absorb incident white light and transfer the photonic energy to a tiny semiconductor embedded on the device. Although fluorescent organic molecules offer strong potential as modules for such solar collectors, we emphasize the promise offered by transition metal complexes. Thus, an extended series of binuclear Ru(II)/Os(II) poly(pyridine) complexes has been shown to be highly promising sensitizers for amorphous silicon solar cells. These materials absorb a high fraction of visible light while the Ru(II)-based units possess triplet energies that are comparable to those of the naphthalene-based bridge. The metal complex injects a triplet exciton into the bridge and this, in turn, is trapped by the Os(II)-based terminal. The result is extremely efficacious triplet-energy transfer; at room temperature the rate of energy transfer is independent of distance over some 6 nm and only weakly dependent on temperature.


1992 ◽  
Vol 96 (8) ◽  
pp. 6203-6212 ◽  
Author(s):  
M. Morin ◽  
P. Jakob ◽  
N. J. Levinos ◽  
Y. J. Chabal ◽  
A. L. Harris

1995 ◽  
Vol 48 (11) ◽  
pp. 1787 ◽  
Author(s):  
RG Gilbert

Collisional energy transfer in highly excited molecules (say, 200-500 kJ mol-1 above the zero-point energy of reactant, or of product, for a recombination reaction) is reviewed. An understanding of this energy transfer is important in predicting and interpreting the pressure dependence of gas-phase rate coefficients for unimolecular and recombination reactions. For many years it was thought that this pressure dependence could be calculated from a single energy-transfer quantity, such as the average energy transferred per collision. However, the discovery of 'supercollisions' (a small but significant fraction of collisions which transfer abnormally large amounts of energy) means that this simplistic approach needs some revision. The 'ordinary' (non-super) component of the distribution function for collisional energy transfer can be quantified either by empirical models (e.g., an exponential-down functional form) or by models with a physical basis, such as biased random walk (applicable to monatomic or diatomic collision partners) or ergodic (for polyatomic collision partners) treatments. The latter two models enable approximate expressions for the average energy transfer to be estimated from readily available molecular parameters. Rotational energy transfer, important for finding the pressure dependence for recombination reactions, can for these purposes usually be taken as transferring sufficient energy so that the explicit functional form is not required to predict the pressure dependence. The mechanism of 'ordinary' energy transfer seems to be dominated by low-frequency modes of the substrate, whereby there is sufficient time during a vibrational period for significant energy flow between the collision partners. Supercollisions may involve sudden energy flow as an outer atom of the substrate is squashed between the substrate and the bath gas, and then is moved away from the interaction by large-amplitude motion such as a ring vibration or a rotation; improved experimental and theoretical understanding of this phenomenon is seen as an important area for future development.


Sign in / Sign up

Export Citation Format

Share Document