scholarly journals Cod catches taken by the German recreational fishery in the western Baltic Sea, 2005–2010: implications for stock assessment and management

2012 ◽  
Vol 69 (10) ◽  
pp. 1769-1780 ◽  
Author(s):  
Harry V. Strehlow ◽  
Norbert Schultz ◽  
Christopher Zimmermann ◽  
Cornelius Hammer

Abstract Strehlow, H. V., Schultz, N., Zimmermann, C., and Hammer, C. 2012. Cod catches taken by the German recreational fishery in the western Baltic Sea, 2005–2010: implications for stock assessment and management. – ICES Journal of Marine Science, 69: 1769–1780. Next to the commercial fishery, the recreational fishery plays an important role in the removal of biomass from fish stocks. In this study, we present estimates of German recreational cod (Gadus morhua) catches in the western Baltic Sea between 2005 and 2010. Fishing effort was estimated using a stratified mail survey and annual sales of fishing licences. Catch per unit effort was estimated by stratified random sampling of access points and interviews about completed trips. Length distributions of cod catches were acquired by sampling recreational cod catches from charter boats and data from community fishing events. Estimates of the total cod biomass removed by the recreational fishery fluctuated between 2159 t in 2009 and 4127 t in 2005. Annual recreational fishery cod harvests accounted for a significant share of the total landings, with a yearly variation from 34 to 70% of the German commercial cod landings from the western Baltic Sea. The majority of recreational fishery cod catches were taken from private boats and charter vessels. Because of the amount and specifically the variability of the recreational catches, they are important for the assessment and management of the resource and, therefore, need to be surveyed annually.

2006 ◽  
Vol 63 (6) ◽  
pp. 961-968 ◽  
Author(s):  
Joe Horwood ◽  
Carl O'Brien ◽  
Chris Darby

AbstractRecovery of depleted marine, demersal, commercial fish stocks has proved elusive worldwide. As yet, just a few shared or highly migratory stocks have been restored. Here we review the current status of the depleted North Sea cod (Gadus morhua), the scientific advice to managers, and the recovery measures in place. Monitoring the progress of North Sea cod recovery is now hampered by considerable uncertainties in stock assessments associated with low stock size, variable survey indices, and inaccurate catch data. In addition, questions arise as to whether recovery targets are achievable in a changing natural environment. We show that current targets are achievable with fishing mortality rates that are compatible with international agreements even if recruitment levels remain at the current low levels. Furthermore, recent collations of data on international fishing effort have allowed estimation of the cuts in fishing mortality achieved by restrictions on North Sea effort. By the beginning of 2005, these restrictions are estimated to have reduced fishing mortality rates by about 37%. This is insufficient to ensure recovery of North Sea cod within the next decade.


1967 ◽  
Vol 24 (1) ◽  
pp. 145-190 ◽  
Author(s):  
D. J. Garrod

By reason of its geographical distribution, the Arcto-Norwegian cod (Gadus morhua) supports three distinct fisheries, two feeding fisheries in the Barents Sea and at Bear Island–Spitsbergen, and a spawning fishery off the Norway coast. In the past this diversity of fishing on the one stock has made it difficult to unify all the data to give an overall description of post-war changes in the stock. In this contribution three modifications of conventional procedures are introduced which enable this to be done. These are: (i) a system of weighting the catch per unit effort data from each fishery to a level of comparability; (ii) a more rigorous definition of the effective fishing effort on each age-group; (iii) a method of estimation of the effective fishing effort on partially recruited age-groups.Using these methods the analysis presents the effects of fishing on each fishery in the context of its effect on the total stock, and at the same time it indicates ways in which factors other than fishing may have influenced the apparent abundance of the stock. The treatment of the data is also used to derive estimates of spawning stock and recruitment of 3-year-old cod for subsequent analysis of stock–recruitment relationships.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ian Salter ◽  
Mourits Joensen ◽  
Regin Kristiansen ◽  
Petur Steingrund ◽  
Poul Vestergaard

AbstractEnvironmental DNA (eDNA) has emerged as a powerful approach for studying marine fisheries and has the potential to negate some of the drawbacks of trawl surveys. However, successful applications in oceanic waters have to date been largely focused on qualitative descriptions of species inventories. Here we conducted a quantitative eDNA survey of Atlantic cod (Gadus morhua) in oceanic waters and compared it with results obtained from a standardized demersal trawl survey. Detection of eDNA originating from Atlantic cod was highly concordant (80%) with trawl catches. We observed significantly positive correlations between the regional integrals of Atlantic cod biomass (kg) and eDNA quantities (copies) (R2 = 0.79, P = 0.003) and between sampling effort-normalised Catch Per Unit Effort (kg hr−1) and eDNA concentrations (copies L−1) (R2 = 0.71, P = 0.008). These findings extend the potential application of environmental DNA to regional biomass assessments of commercially important fish stocks in the ocean.


2015 ◽  
Vol 72 (11) ◽  
pp. 1619-1628 ◽  
Author(s):  
Tommi Perälä ◽  
Anna Kuparinen

Environmental factors such as water temperature, salinity, and the abundance of zooplankton can have major effects on certain fish stocks’ ability to produce juveniles and, thus, stock renewal ability. This variability in stock productivity manifests itself as different productivity regimes. Here, we detect productivity regime shifts by analyzing recruit-per-spawner time series with Bayesian online change point detection algorithm. The algorithm infers the time since the last regime shift (change in mean or variance or both) as well as the parameters of the data-generating process for the current regime sequentially. We demonstrate the algorithm’s performance using simulated recruitment data from an individual-based model and further apply the algorithm to stock assessment estimates for four Atlantic cod (Gadus morhua) stocks obtained from RAM legacy database. Our analysis shows that the algorithm performs well when the variability between the regimes is high enough compared with the variability within the regimes. The algorithm found several productivity regimes for all four cod stocks, and the findings suggest that the stocks are currently in low productivity regimes, which have started during the 1990s and 2000s.


2013 ◽  
Vol 70 (4) ◽  
pp. 864-872 ◽  
Author(s):  
Marc Simon Weltersbach ◽  
Harry V. Strehlow

Abstract Weltersbach, M. S., and Strehlow, H. V. 2013. Dead or alive—estimating post-release mortality of Atlantic cod in the recreational fishery. – ICES Journal of Marine Science, 70: 864–872. Atlantic cod (Gadus morhua) is one of the most important commercial and recreational target species in European marine waters. Recent recreational fisheries surveys revealed that recreational cod catches and release rates are substantial compared to the commercial fishery, particularly in the western Baltic Sea. Despite high release rates, no literature exists exploring the post-release mortality of cod and potential sublethal effects after catch-and-release in recreational fisheries. This study investigates (i) the post-release mortality of undersized cod, (ii) potential factors affecting mortality, and (iii) consequences of the catch-and-release process on cod. During four experimental trials, western Baltic Sea cod were angled from a charter vessel and thereafter observed together with control fish in netpens for 10 d at holding temperatures between 6.2 and 19.8°C. Adjusted mortality rates for angled cod ranged from 0.0–27.3% (overall mean 11.2%). A logistic regression analysis revealed that bleeding and holding-water temperature were the only significant predictors of mortality. Slow hook injury healing (>10 d) and bacterial wound infections were observed in some surviving cod. The results will help to increase the accuracy of recreational cod removal estimates and thereby improve the management of western Baltic cod stock.


2013 ◽  
Vol 71 (5) ◽  
pp. 1187-1197 ◽  
Author(s):  
Christian Möllmann ◽  
Martin Lindegren ◽  
Thorsten Blenckner ◽  
Lena Bergström ◽  
Michele Casini ◽  
...  

Abstract Theory behind ecosystem-based management (EBM) and ecosystem-based fisheries management (EBFM) is now well developed. However, the implementation of EBFM exemplified by fisheries management in Europe is still largely based on single-species assessments and ignores the wider ecosystem context and impact. The reason for the lack or slow implementation of EBM and specifically EBFM is a lack of a coherent strategy. Such a strategy is offered by recently developed integrated ecosystem assessments (IEAs), a formal synthesis tool to quantitatively analyse information on relevant natural and socio-economic factors, in relation to specified management objectives. Here, we focus on implementing the IEA approach for Baltic Sea fish stocks. We combine both tactical and strategic management aspects into a single strategy that supports the present Baltic Sea fish stock advice, conducted by the International Council for the Exploration of the Sea (ICES). We first review the state of the art in the development of IEA within the current management framework. We then outline and discuss an approach that integrates fish stock advice and IEAs for the Baltic Sea. We intentionally focus on the central Baltic Sea and its three major fish stocks cod (Gadus morhua), herring (Clupea harengus), and sprat (Sprattus sprattus), but emphasize that our approach may be applied to other parts and stocks of the Baltic, as well as other ocean areas.


2003 ◽  
Vol 60 (3) ◽  
pp. 259-268 ◽  
Author(s):  
Are Salthaug ◽  
Sondre Aanes

A central problem when using commercial catch per unit effort (CPUE) as an index of fish stock abundance is that fishing vessels search for concentrations of fish. For a given stock abundance, CPUE may become high if the vessels succeed in finding patches of fish and low if the vessels distribute their catching operations more randomly. In this work, the relationship between catchability and two measures of the degree of spatial concentration of a trawl fleet (the fleet's spatial extent and the fleet's degree of spatial patchiness) is investigated for four different fish stocks. The catchability of northeast Arctic cod (Gadus morhua) is strongly related to the fleet's degree of spatial concentration, but the relationship is weaker for northeast Arctic haddock (Melanogrammus aeglefinus), and no relationships appear for two saithe (Pollachius virens) stocks. Our findings suggest that adjusting CPUE with a measure of the fleet's average degree of concentration relates CPUE more strongly with abundance for migratory stocks.


2010 ◽  
Vol 67 (9) ◽  
pp. 1972-1979 ◽  
Author(s):  
Markus Vetemaa ◽  
Redik Eschbaum ◽  
Anu Albert ◽  
Lauri Saks ◽  
Aare Verliin ◽  
...  

Abstract Vetemaa, M., Eschbaum, R., Albert, A., Saks, L., Verliin, A., Jürgens, K., Kesler, M., Hubel, K., Hannesson, R., and Saat, T. 2010. Changes in fish stocks in an Estonian estuary: overfishing by cormorants? – ICES Journal of Marine Science, 67: 1972–1979. In Estonia, the cormorant Phalacrocorax carbo sinensis is a newcomer, and its numbers have increased rapidly since 1985. In the shallow protected (no fishery) Käina Bay in Väinameri (West Estonia), the colony was established in 1995. Gillnet sampling indicated that roach was the most abundant spawning fish species in 1995. Ten years later, when the study was repeated, the catch per unit effort was already more than 100 times lower than in 1995. The number of spawning perch decreased tenfold from 1995 to 2005. During the same period, commercial fishing effort in the entire Väinameri area decreased several times. The change in fish abundance in the Käina Bay and in the coastal fish-monitoring areas in the archipelago sea nearby, together with an analysis of food of cormorants, indicates that the decline in fish abundance might be related to the increased numbers of cormorants. The conclusion is drawn that the establishment of a cormorant colony could have seriously damaged or even prevented normal functioning of historically important spawning grounds and affected fish recruitment to adjacent areas. Therefore, expanding bird colonies might play a role similar to an expanding fishing fleet, by overexploiting the resource.


2006 ◽  
Vol 63 (8) ◽  
pp. 1373-1385 ◽  
Author(s):  
Mark N. Maunder ◽  
John R. Sibert ◽  
Alain Fonteneau ◽  
John Hampton ◽  
Pierre Kleiber ◽  
...  

AbstractDespite being one of the most common pieces of information used in assessing the status of fish stocks, relative abundance indices based on catch per unit effort (cpue) data are notoriously problematic. Raw cpue is seldom proportional to abundance over a whole exploitation history and an entire geographic range, because numerous factors affect catch rates. One of the most commonly applied fisheries analyses is standardization of cpue data to remove the effect of factors that bias cpue as an index of abundance. Even if cpue is standardized appropriately, the resulting index of relative abundance, in isolation, provides limited information for management advice or about the effect of fishing. In addition, cpue data generally cannot provide information needed to assess and manage communities or ecosystems. We discuss some of the problems associated with the use of cpue data and some methods to assess and provide management advice about fish populations that can help overcome these problems, including integrated stock assessment models, management strategy evaluation, and adaptive management. We also discuss the inappropriateness of using cpue data to evaluate the status of communities. We use tuna stocks in the Pacific Ocean as examples.


Sign in / Sign up

Export Citation Format

Share Document