scholarly journals Chromatographic Methods for the Determination of Aminexil, Pyridoxine, and Niacinamide in a Novel Cosmetic Hair Preparation

2020 ◽  
Vol 103 (4) ◽  
pp. 1167-1172
Author(s):  
Mamdouh R Rezk ◽  
Hebatallah M Essam ◽  
Enas A Amer ◽  
Dina M S Youssif

Abstract Background Aminexil, a new compound patented by L’Oreal, has a stimulating effect on human keratin fibers. Pyridoxine HCl and niacinamide are added to boost the hair tonic effect of aminexil. Objective Two novel chromatographic methods were developed for the determination of aminexil (AX), niacinamide (NA) and pyridoxine HCl (PD) in the novel hair tonic preparation. Methods The developed methods were high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC) with densitometric determination. Different experimental parameters were investigated and optimized to achieve complete baseline separation and well resolved peaks. The RP-HPLC separation was achieved using a Thermoscientific BDS hypersil C18 (250 × 4.6 mm, 5 µm) column using 0.005 M hexane sulfonic acid: methanol (80: 20, v/v) as a mobile phase. For the TLC method, the three analytes were partitioned between propanol: toluene: ammonia solution (40:60:2, v/v/v) and fluorescent silica plates. The two methods were validated in compliance with International Conference on Harmonization (ICH) guidelines. The obtained data were statistically analyzed to confirm the existing results. The developed methods were successfully applied for determination of the studied drugs in pure forms and in the cosmetic preparation. Results For the HPLC method, the RSDs of AX, NA and PD were 0.70, 0.88 and 1.17 respectively. For the TLC method, the RSDs of AX, NA and PD were 1.06, 1.37 and 0.73 respectively. Conclusions The proposed chromatographic methods showed high sensitivity and selectivity for the three compounds under analysis in the laboratory prepared mixture and in the hair tonic preparation. Highlights Aminexil, Pyridoxine, Niacinamide, HPLC. The present work offers two reproducible, accurate, validated, time and cost saving alternatives for the quantitative and qualitative determination of medicated hair preparation.

2020 ◽  
Vol 23 (10) ◽  
pp. 1010-1022
Author(s):  
Emrah Dural

Aim and scope: Due to the serious toxicological risks and their widespread use, quantitative determination of phthalates in cosmetic products have importance for public health. The aim of this study was to develop a validated simple, rapid and reliable high-performance liquid chromatography (HPLC) method for the determination of phthalates which are; dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), di(2- ethylhexyl) phthalate (DEHP), in cosmetic products and to investigate these phthalate (PHT) levels in 48 cosmetic products marketing in Sivas, Turkey. Materials and Methods: Separation was achieved by a reverse-phase ACE-5 C18 column (4.6 x 250 mm, 5.0 μm). As the mobile phase, 5 mM KH2PO4 and acetonitrile were used gradiently at 1.5 ml min-1. All PHT esters were detected at 230 nm and the run time was taking 21 minutes. Results: This method showed the high sensitivity value the limit of quantification (LOQ) values for which are below 0.64 μg mL-1 of all phthalates. Method linearity was ≥0.999 (r2). Accuracy and precision values of all phthalates were calculated between (-6.5) and 6.6 (RE%) and ≤6.2 (RSD%), respectively. Average recovery was between 94.8% and 99.6%. Forty-eight samples used for both babies and adults were successfully analyzed by the developed method. Results have shown that, DMP (340.7 μg mL-1 ±323.7), DEP (1852.1 μg mL-1 ± 2192.0), and DBP (691.3 μg mL-1 ± 1378.5) were used highly in nail polish, fragrance and cream products, respectively. Conclusion: Phthalate esters, which are mostly detected in the content of fragrance, cream and nail polish products and our research in general, are DEP (1852.1 μg mL-1 ± 2192.0), DBP (691.3 μg mL-1 ± 1378.5) and DMP (340.7 μg mL-1 ±323.7), respectively. Phthalates were found in the content of all 48 cosmetic products examined, and the most detected phthalates in general average were DEP (581.7 μg mL-1 + 1405.2) with a rate of 79.2%. The unexpectedly high phthalate content in the examined cosmetic products revealed a great risk of these products on human health. The developed method is a simple, sensitive, reliable and economical alternative for the determination of phthalates in the content of cosmetic products, it can be used to identify phthalate esters in different products after some modifications.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (06) ◽  
pp. 63-68
Author(s):  
R. Raut ◽  
◽  
A. Patil ◽  
V. K Munipalli ◽  
M. Patel ◽  
...  

A simple precise and rapid Reverse Phase High Performance Liquid Chromatographic (RP-HPLC) method has been developed for quantitative determination of Regorafenib in tablet dosage form. In this method Hypersil Gold (C18, 150mm× 4.6mm id, 3μ) column with mobile phase consisting of Trifluoroacetic acid (0.2% v/v) and Acetonitrile in the ratio of (50: 50 v/v) at 400C in an isocratic mode was used. The detection was carried out at 260 nm and 20μL injection volume was selected with the flow rate 1mL/min. The linearity range of Regorafenib shows concentration between 5-200 μg/mL. The regression coefficient obtained was 0.999. Retention time of Regorafenib was found to be 6.49 minutes. Acetonitrile and Water in the ratio of (3:1) was used as a diluent. The method was validated as per ICH guidelines and is simple, fast, accurate, precise and can be applied for routine quality control analysis of Regorafenib in tablet dosage form.


Author(s):  
Zubaidur Rahman ◽  
Vijey Aanandhi M ◽  
Sumithra M

Objective: A simple, novel, sensitive, rapid high-performance liquid chromatographic (RP-HPLC) method has been developed and validated for quantitative determination of atomoxetine HCl (ATH) in bulk and formulations.Methods: The chromatographic development was carried out on RP-HPLC. The column used as Xterra RP 18 (250 mm × 4.6 mm, 5 μ particle size), with mobile phase consisting of methanol: water 80:20 V/V. The flow rate was 1.0 mL/min and the effluents were monitored at 270 nm.Results: The retention time was found to be 5.350 min. The method was validated as per International Conference on Harmonization Guideline with respect to linearity, accuracy, precision, and robustness. The calibration curve was found to be linear over a range of 2–10 μg/mL with a regression coefficient of 0.9999. The method has proved high sensitivity and specificity.Conclusion: The results of the study showed that the proposed RP-HPLC method was simple, rapid, precise and accurate which is useful for the routine determination of ATH in bulk drug and in its pharmaceutical dosage form.


2010 ◽  
Vol 93 (5) ◽  
pp. 1503-1514 ◽  
Author(s):  
Sumita Dixit ◽  
Subhash K Khanna ◽  
Mukul Das

Abstract A simple and sensitive HPLC method has been developed for the simultaneous determination of eight permitted food colors and five commonly encountered nonpermitted colors in various food commodities, including sugar-, fat-, and starch-based food matrixes. The method uses a specific food category-based cleanup/treatment procedure before color extraction to avoid the interference of food matrixes, and to obtain the optimal color extraction. Analysis was performed on a reversed-phase C18 -Bondapak column with ammonium acetate and acetonitrile gradient elution as the mobile phase; a programmable max-specific visible detection was used to monitor colors to obtain the higher sensitivity and expanded scope needed for multicolor blends having diverse absorption maxima. All colors showed good linearity, with regression coefficients of 0.99740.9999. The LOD and LOQ values ranged from 0.01 to 0.12 mg/L, and from 0.04 to 0.83 mg/L or mg/kg, respectively. The intraday and interday precision tests produced good RSD values, and the recoveries from different food matrixes ranged from 82 to 104%. The method offers high sensitivity for analysis of a wide variety of food matrixes containing a broad scope of multicolor blends. Two nonpermitted colors, orange II and metanil yellow, were found. Also, a number of samples contained permitted colors at levels two-to seven-fold higher than those prescribed.


1993 ◽  
Vol 28 (1) ◽  
pp. 16-24 ◽  
Author(s):  
R. Vieira ◽  
M. Aldegunde

The determination of serotonin (5-HT), N-acetylserotonin (NAS) and 5-hydroxy-3-indoleacetic acid (5-HIAA) in single brains of two acridids (Paracinema tricolor and Oedipoda caerulescens) was accomplished using a HPLC method combined with amperometric detection. A hydrodynamic voltammetry approach was used to assess the identity of each peak by comparing the voltammograms of standards and those of samples. The analytical method gave satisfactory reproducibility and sensitivity, and detected levels of 5-HT, NAS and 5-HIAA as low as 29, 55 and 10 fmol, respectively. This high sensitivity together with the simplicity of sample processing make the present analytical method suitable for a wide range of studies concerning indoleamine analyses in the insect nervous system. In both acridids, 5-HT showed the largest quantities, while its derivatives occurred in extremely low amounts. The results suggest that N-acetylation of 5-HT is quantitatively preferred to oxidative deamination in both species (NAS levels were 4-fold those of 5-HIAA). The relative importance of each catabolic pathway is discussed as related to physiological and genetic aspects.


Author(s):  
M. Murali ◽  
P. Venkateswara Rao

A simple, selective, linear, precise and accurate isocratic RP-HPLC method was developed and validated for rapid assay of Vandetanib, an anticancer drug, in both bulk and tablet dosage form. Elution at a flow rate of 1ml/min was employed on a symmetry C18 column at ambient temperature. The mobile phase consisted of acetonitrile, water and orthophosphoric acid in the ratio of 90:08:02 (v/v/v). Linearity was observed in concentration range of 50-200 ppm. The retention time for Vandetanib was 3.326 min. The method was validated as per the ICH guidelines. The proposed method can be successfully applied for the estimation of Vandetanib in pharmaceutical dosage forms. Moreover the detection alone was also verified through LC-MS of the Vandetanib drug using ESI method which provides future scope for study of this drug using LC-MS method also.


2020 ◽  
Vol 103 (4) ◽  
pp. 980-988
Author(s):  
Ghada AbdElHamid Sedik ◽  
Doha Mohamed Naguib ◽  
Fahima Morsy ◽  
Hala Elsayed Zaazaa

Abstract Background Imidocarb dipropionate (IMD) is an immunomodulator agent commonly used for treatment of anaplasmosis in cattle. Objective Thus, two sensitive, specific, and precise stability-indicating chromatographic methods have been developed, optimized, and validated for its determination in presence of its acid, alkaline, and oxidative stressed degradation products. Method The first method is based on separation of IMD and its forced induced degradation products on reversed phase cyano column using isocratic elution system consisted of sodium acetate buffer–methanol–acetonitrile (55: 30:15, v/v/v), pH 4.6 at a flow rate of 1.2 mL/min, and UV detection at 254 nm. The second method utilized TLC combined with densitometric determination of the separated bands at 254 nm. The separation was achieved using silica gel 60 F254 TLC plates with a mixture of ethyl acetate–methanol–ammonia–water (8.5:1:0.5:0.2, v/v/v/v) as a developing system. Results HPLC analysis was applied in range of 0.25–40 µg/mL with LOD of 0.073 µg/mL. While densitometric measurements showed linearity in the range of 0.1–1.8 µg/band with LOD of 0.02 µg/band. Conclusions The suggested methods were validated in compliance with the ICH guidelines and were successfully applied for determination of IMD in its commercial veterinary formulations with good recoveries. Furthermore, the proposed HPLC method was extended to the determination of IMD residues in bovine meat and milk samples Highlights Bovine meat, HPLC, Imidocarb dipropionate, Milk, TLC.


2019 ◽  
Vol 15 (5) ◽  
pp. 429-438
Author(s):  
Marianne Alphonse Mahrouse ◽  
Asmaa Ahmed El-Zaher ◽  
Ahmed Mohammed Al-Ghani

Background:Cinnarizine, an antihistaminic drug, is commonly formulated in combination with domperidone and with paracetamol for treatment and prevention of motion sickness and migraine.Objective:The aim of this work was to develop new, simple, precise and selective chromatographic methods (RP-HPLC and TLC-densitometric methods) for the determination of these drugs. These methods can be used as analytical tools in the routine examination in quality control laboratories.Methods:The first method was RP-HPLC method, the separation was carried out on an Inertsil® ODS- 3V C18 column (250 mm × 4.6 mm, 5 µm) using a mobile phase composed of methanol: acetonitrile (45: 55, v/v) at a flow rate of 1 ml/min. The detection was carried out at 220 nm. The second method was a TLC-densitometric method where the studied components were separated using a developing system composed of toluene: ethyl acetate: methanol: triethylamine (5: 4.3: 0.7: 0.5, v/v/v/v) on TLC silica gel 60 F254 plates, followed by densitometric scanning at 270 nm.Results:In RP-HPLC method, the peaks were sharp and well separated, the retention times were 5.25, 3.48 and 2.78 min, for cinnarizine, domperidone and paracetamol, respectively. Linearity was obtained over the concentration ranges 1-22, 0.75-16.5 and 25-550 µg/ml, for cinnarizine, domperidone and paracetamol, respectively. In TLC-densitometric method, good separation of spots and linear relationships were achieved over the concentration ranges of 0.2-2, 0.15-1.5 and 5-50 µg/spot, for cinnarizine, domperidone and paracetamol, respectively. Method validation was conducted according to ICH guidelines in terms of linearity, accuracy, selectivity, precision and robustness.Conclusion:The developed methods were applied for the determination of the cited drugs in tablets containing binary drug mixtures. The methods are simple and precise and can be used for routine analysis of the labelled drugs in combined dosage forms in quality control laboratories.


2021 ◽  
Vol 19 (7) ◽  
pp. 196-208
Author(s):  
H.N.K. AL-Salman ◽  
Ekhlas Qanber Jasim ◽  
Hussein H. Hussein

Objective: The current study aims to find a suitable, accurate, and faster RP-HPLC technique for the determination of theophylline, which could then be validated in accordance with the International Conference on Harmonization (ICH) guidelines. The Aim of this Study: The aim of this study was to develop an efficient, accurate, and faster RP-HPLC method for determining theophylline, which was then validated using the International Conference on Harmonization (ICH) guidelines. Methods: In the HPLC analysis, the Waters 2695 was used. The drug was isolated better using an Ion Pac zorbax 300-SCX Agilent Column, 5 m, 4.6 250 mm, with a liquid phase of Orthophosphoric acid (0.1 percent Orthophosphoric acid in HPLC acetonitrile and Methanol in the ratio of 50:50 v/v at a flow rate of 1ml/min, with discovery at 280 nm using a PDA detector. Results: Theophylline's preservation time was discovered to be 3.747 0.127 min. In the 5-25 mg/l range, the procedure was found to be linear, with a parallel coefficient (R2) of 0.9998. The LOD and LOQ of the system were determined to be (0.99 and 3) g/ml, respectively. The technique and system precisions were predicted using, and the outcomes were determined as percent RSD principles, which were noticed to be within the strict limitations. Theophylline recovery was detected to be in the 99-100 percent range, confirming the method's precision. Conclusion: Using basic ICH guidelines, the suggested RP-HPLC process was validated. The following methodology can be used successfully and easily for routine diagnostic analysis.


Author(s):  
Deepthi R ◽  
Gowri Sankar D

Objective: The present study aimed to develop a stability-indicating reverse-phase high performance-liquid chromatography (RP-HPLC) method for the estimation of Sofosbuvir, Velpatasvir, and Voxilaprevir in tablet dosage form and validated in accordance with ICH guidelines. Methods: The optimized conditions for the developed RP-HPLC method are Agilent C18 (250 mm×4.6mm, 5μ) column maintained at 30ºC with a mobile phase consisting of Buffer(0.1%OPA) and Acetonitrile taken in the ratio 55:45%v/v on isocratic mode at flow rate 1.0ml/min. The sample was detected at 220 nm. Results: The retention time of Sofosbuvir, Velpatasvir, and Voxilaprevir was found to be 2.17, 2.731 and 3.55 min respectively. The developed method was validated for accuracy, precision, specificity, ruggedness, robustness and solution stability.


Sign in / Sign up

Export Citation Format

Share Document