scholarly journals 392 Vitamin C and transit stress in beef cattle

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 168-168
Author(s):  
Erin L Deters ◽  
Aubree M Beenken ◽  
Stephanie L Hansen

Abstract Transportation of cattle by road is unavoidable in beef production due to segmentation of the industry. Psychological and physical stress associated with transit can negatively impact cattle health and performance upon arrival at their destination. Thus, investigation of resiliency or recovery-based nutritional strategies to mitigate transit stress are warranted. Because oxidative stress is likely linked to transportation stress, one such strategy is antioxidants such as vitamin C (VC). Seventy-two Angus-cross steers (356 ± 18 kg) were used to determine the effects of a pre- versus post-transit VC injection on 56 d feedlot performance. Steers were randomly assigned to intramuscular injection treatments (24 steers/treatment): saline pre- and post-transit (CON), VC (Vet One; 250 mg sodium ascorbate/mL; 5 g sodium ascorbate/steer) pre-transit and saline post-transit (PRE), or saline pre-transit and VC post-transit (POST). Steers were transported for ~18 h (1,675 km) prior to sorting into pens equipped with GrowSafe bunks (6 steers/pen). Blood was collected from 12 steers/treatment on d 0, 1, 2, and 7 for analysis of plasma ascorbate concentrations. Plasma ascorbate concentrations were decreased by ~10% immediately post-transit for CON and POST-steers but increased for PRE-steers; regardless of treatment, concentrations were similar to pre-transit values by d 7 (treatment × day; P < 0.01). Steers that received VC at either timepoint (pre- or post-transit) exhibited greater dry matter intake from d 31–57 and d 1–57 compared to CON-steers (P ≤ 0.02). However, PRE-steers exhibited the greatest average daily gain from d 7–31 and d 1–57 (P ≤ 0.05), resulting in PRE-steers being heaviest on d 30/31 (P = 0.03) and tending to be heaviest on d 56/57 (P = 0.07). Based on these data, timing of nutritional intervention is vital for optimal effectiveness. Furthermore, nutritional strategies that improve antioxidant status prior to long-distance transit events may positively influence post-transit performance.

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 121-121
Author(s):  
Aubree M Beenken ◽  
Erin L Deters ◽  
Stephanie L Hansen

Abstract This study examined the effects of injectable vitamin C (VC) before transport and duration of transit on feedlot performance, inflammation, and muscle fatigue in cattle. One hundred thirty-one, Angus-cross steers (409 ± 4 kg) were stratified by bodyweight (BW) to a 2 × 2 factorial of intramuscular injection (INJ; 20 mL/steer): VC (250 mg sodium ascorbate/mL) or saline (SAL) and road transit duration (DUR): 18 (18; 1,770 km) or 8 h (8; 727 km). On d 0, steers were weighed and received INJ of SAL or VC immediately before transport. Upon return (d 1), BW and blood were collected before steers returned to pens with GrowSafe bunks. Steers were weighed on d 0, 1, 7, 15, 30, 31, 54, and 55. Data were analyzed via ProcMixed of SAS (experimental unit = steer; 32–34 steers/treatment) with fixed effects of INJ, DUR, and the interaction. Blood was collected on d -5, 1, 2, and 3 (9 steers/treatment); blood parameters were analyzed as repeated measures. Average daily gain (ADG) and BW were greater on d 7 and 15 for SAL-18 compared to all other treatments (INJ × DUR, P < 0.01). Final BW, overall ADG, and gain:feed were greater for 18 than 8 (P < 0.01). Injection did not affect BW (P > 0.13) but VC decreased overall dry matter intake compared to SAL (P = 0.03). Steers transported for 18 h had greater serum lactate, haptoglobin, and non-esterified fatty acid concentrations on d 1 compared to steers transported for 8 h (DUR × DAY, P < 0.01). Day 1 plasma ascorbate concentrations were greater for VC and returned to baseline concentrations by d 2 (INJ × DAY, P < 0.01). In contrast to previous work, VC did not improve post-transit performance; however, longer transit duration increased indicators of muscle fatigue and inflammation.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 152-153
Author(s):  
Aubree M Beenken ◽  
Erin L Deters ◽  
Colten W Dornbach ◽  
Stephanie L Hansen ◽  
Joshua C McCann ◽  
...  

Abstract Ninety-one early-weaned (65 ± 11 d) Angus steers (92 ± 4 kg) were blocked by age to a 2 × 2 factorial examining effects of injectable vitamin C (VC) at weaning and/or prior to transport to the feedlot on antibody titers and growth performance. Injections (20 mL/steer) of VC (250 mg sodium ascorbate/mL) or saline (SAL) were given at time of weaning on d 0 (WEAN) and/or prior to a 6 hr trucking event to a feedlot on d 49 (TRANS). Steers were given booster vaccinations on d 0. Steers were weighed on d 0, 1, 14, 48, 49, 64, 106, and 107. Blood was collected (12 steers/treatment) on d 0, 1, 2, 14, 49 (pre- and post-transit), 50, and 51. Data were analyzed via Proc-Mixed of SAS (experimental unit = steer; n = 22–23/treatment) with fixed effects of block, WEAN, TRANS, and WEAN × TRANS. Plasma ascorbate concentrations for weaning (d 0, 1, and 2) and transit (d 49-pre-trucking, 49-post-trucking, 50, and 51) were analyzed as repeated measures (repeated effect = day). Plasma ascorbate concentrations were greater on d 1 and 2 for steers that received VC at weaning (VC = 19.6, SAL = 8.8 ± 1.26 µM; WEAN × day P < 0.01). Similarly, ascorbate concentrations were greater on d 49 post-trucking, 50, and 51 for steers that received VC pre-transit (TRANS × day P = 0.01). Treatments did not affect bodyweight or average daily gain throughout the trial (P > 0.32). There were no effects of treatment on serum Bovine Viral Diarrhea Virus type 2 antibody titers on d 14 or 51 (P > 0.33). An injection of VC administered to early weaned beef steers at weaning or pre-transit increases plasma ascorbate concentrations but does not improve growth performance or antibody response to vaccination booster.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 298-299
Author(s):  
Bailey L Basiel ◽  
Chad D Dechow ◽  
Tara L Felix

Abstract Objectives were to compare feedlot performance and carcass traits of F1 beef × Holstein steers and Holstein steers. Angus or Limousin × Holstein crossbred [n = 27; age = 12 ± 3 months; body weight (BW) = 435 ± 8 kg] and Holstein (n = 20; age = 11 ± 2 months; BW = 400 ± 9 kg) steers were fed at the Pennsylvania Department of Agriculture Livestock Evaluation Center for 111 days. Feed intake was recorded using the GrowSafe Feed Intake Monitoring System (Model 4000E, GrowSafe Systems Ltd., Calgary AB, Canada). The diet contained corn silage, dried distillers grains, soybean meal, and cracked corn and was formulated to meet or exceed the requirements of beef cattle (NASEM, 2016). Growth performance variables of interest and carcass measurements were analyzed with the Mixed procedure of SAS (SAS 9.4; SAS Institute Inc., Cary, NC). USDA assigned quality grades (QG) and yield grades (YG) were analyzed the with GLIMMIX procedure of SAS. Breed was a fixed effect in all models. There were no differences (P > 0.05) between breeds in average daily gain or feed efficiency. Crossbreds exceeded Holsteins in initial (P < 0.01) and final BW (P = 0.01), dry matter intake (P = 0.03), hot carcass weight (P < 0.01), backfat (P = 0.03), and ribeye area (REA; P < 0.01). Thirty-five percent (35%) of the Holsteins received a QG of Choice or above while 74% of crossbreds graded USDA Choice or above (P = 0.01). However, 75% of Holsteins were YG 2 or lower while only 45% of crossbreds achieved YG 2 or less (P = 0.05). There was no improvement in efficiency when crossbreds were compared to Holsteins; however, carcasses from crossbreds were more likely to grade USDA Choice or above while yielding greater REA and backfat than Holsteins.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 34-34
Author(s):  
Erin Deters ◽  
Stephanie L Hansen

Abstract This study sought to determine the effects of injectable vitamin C (VC), pre- or post-transit, on blood parameters and feedlot performance of beef steers. Seventy-two, Angus-cross steers were blocked by weight (356 ± 18 kg) and randomly assigned to intramuscular injection treatments (20 mL/steer): saline pre- and post-transit (CON), VC (Vet One; 250 mg sodium ascorbate/mL) pre-transit and saline post-transit (PRE), or saline pre-transit and VC post-transit (POST). Following pre-transit injections (d 0), steers were transported for ~18 h (1,675 km). Upon return (d 1), steers received post-transit injections and were sorted into pens (6 steers/pen) equipped with GrowSafe bunks. Steers were weighed on d 0, 1, 7, 30, 31, 56, and 57. Blood was collected on d 0, 1, 2, and 7. Data were analyzed as a randomized complete block design using ProcMixed of SAS (experimental unit = steer; 24 steers/treatment); treatment and block were fixed effects. Blood variables were analyzed as repeated measures. Injectable VC did not affect BW shrink due to transit (P = 0.28). Compared to CON-steers, PRE or POST-steers exhibited greater dry matter intake from d 31-57 and overall (d 1-57; P ≤ 0.02). Average daily gain was greatest for PRE-steers from d 7-31 and overall (P ≤ 0.05), resulting in PRE-steers being heaviest on d 30/31 (P = 0.03) and tending to be heaviest on d 56/57 (P = 0.07). Plasma ascorbate concentrations were decreased immediately post-transit for CON and POST-steers but increased for PRE-steers (treatment × day; P < 0.01). Plasma ferric reducing antioxidant potential and malondialdehyde were decreased post-transit while serum non-esterified fatty acid and haptoglobin were increased; all blood parameters returned to baseline by d 7 (day; P < 0.01). Timing of injectable VC administration appears to influence how cattle respond to transit as pre-transit administration improved subsequent performance of steers.


Author(s):  
Aubree M Beenken ◽  
Erin L Deters ◽  
Stephanie L Hansen

Abstract This study examined the effects of injectable vitamin C (VC) before transport and duration of transit on feedlot performance, inflammation, and muscle fatigue in cattle. One hundred thirty-two Angus-cross steers (393 ± 4 kg) were stratified by body weight (BW) to a 2 × 2 factorial of intramuscular injection (INJ; 20 mL/steer): VC (250 mg sodium ascorbate/mL) or saline (SAL) and road transit duration (DUR): 18 h (18-h; 1,770 km) or 8 h (8-h; 727 km). On d 0, steers were weighed and given INJ of VC or SAL immediately before transport. Upon return (d 1), BW and blood were collected before steers returned to pens equipped with GrowSafe bunks. Steers were weighed on d 0, 1, 7, 15, 30, 31, 54, and 55. Data were analyzed via ProcMixed of SAS (experimental unit = steer; 32 to 34 steers/treatment) with fixed effects of INJ, DUR, and the interaction. Blood was collected on d -5, 1, 2, 3, and 7 (n = 9 steers/treatment); blood parameters were analyzed as repeated measures with the repeated effect of day. Area under the curve (AUC) for plasma ferric reducing antioxidant power (FRAP) was calculated using R. Final BW was greater for 8-h compared to 18-h (P = 0.05) with no effect of INJ or interaction (P ≥ 0.51). Dry matter intake (DMI) from d 1 to 7 was greater for VC-8, intermediate for VC-18 and SAL-18, and least for SAL-8 (P = 0.02). Overall DMI tended to be greatest for SAL-18, intermediate for VC-18 and VC-8, and lowest by least for SAL-8 (P = 0.08). Day 7 to 31 gain:feed (G:F) was greatest for VC-18 compared to other treatments (INJ × DUR, P = 0.05), and there was no effect of treatment on overall G:F (P ≥ 0. 19). There was no INJ or INJ × DAY (P ≥ 0.17) effect on serum lactate, haptoglobin, or non-esterified fatty acid. However, these blood parameters were greater on d 1 for 18-h compared to 8-h, and both treatments returned to near baseline by d 3 (DUR × DAY, P < 0.01). Plasma ascorbate concentrations on d 1 were greater for VC compared to SAL and returned to baseline by d 2 (INJ × DAY, P < 0.01). Plasma FRAP AUC from d -5 to 3 was greatest for VC-18, intermediate for VC-8 and SAL-8, and lowest by least for SAL-18 (INJ × DAY, P = 0.02). This suggests an antioxidant prior to long-haul transit positively influenced antioxidant capacity; however, VC did not improve overall post-transit performance. While longer transit duration increased indicators of muscle fatigue and inflammation, post-transit performance was not appreciably different between transit durations.


Author(s):  
Erin Deters ◽  
Stephanie L. Hansen

Steers supplemented Diamond V NaturSafe, a yeast fermentation product, at the manufacturer’s current recommended dose for receiving cattle (12 g/steer/d) during a 19-d preconditioning period exhibited greater antioxidant (glutathione) capacity prior to a 19-h transit event. Regardless of treatment, activity of the antioxidant enzyme Mn-superoxide dismutase was increased post-transit, suggesting more antioxidants may be needed to combat transit-induced stress. Supplementing NaturSafe at 12 g/steer/d during both preconditioning and receiving also improved feedlot performance early in the receiving period (d 0 to 30). These data suggest increasing antioxidant status may be an effective strategy to help cattle prepare for and recover from a stressful event, such as long-distance transit.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 193-193
Author(s):  
Eduardo Colombo ◽  
Reinaldo F Cooke ◽  
Alice Brandão ◽  
Jacob Wiegand ◽  
Kelsey Schubach ◽  
...  

Abstract This experiment evaluated the impacts of bovine appeasing substance (BAS) administration on performance, health, and physiological responses of feedlot cattle during a 45-d receiving period. A total of 342 recently-weaned Angus-influenced steers, originating from 16 cow-calf operations, were obtained from an auction yard on d -1 and road-transported (12 h) to the feedlot. Upon arrival on d 0, body weight (BW) was recorded and steers were ranked by BW and source and assigned to receive BAS (Nutricorp, Araras, SP, Brazil; n = 171) or placebo (diethylene glycol monoethyl ether; CON; n = 171). Treatments (5 mL) were topically applied to the nuchal skin area of each animal. Within treatment, calves were allocated to 1 of 24 drylot pens (12 pens/treatment) and received a free choice total-mixed ration from d 1 to 45. Calves were assessed for bovine respiratory disease (BRD) signs and feed intake was recorded from each pen daily. Steer BW was again recorded on d 1, 7, 17, 31, and 45, whereas blood samples were collected from 5 steers/pen concurrently with each BW assessment. Average daily gain was greater (P = 0.05) in BAS vs. CON calves, although final BW did not differ (P = 0.36) between treatments. No treatment effects were detected for feed intake (P = 0.95), resulting in greater (P = 0.05) feed efficiency in BAS vs. CON steers. No treatment effects were detected (P ≥ 0.37) for plasma concentrations of haptoglobin, whereas plasma cortisol concentrations were greater (P = 0.05) in CON vs. BAS steers on d 7 (treatment × day; P = 0.07). Incidence of BRD was greater (P ≤ 0.05) in BAS vs. CON on d 6 to 10 and d 18 to 21 (treatment × day; P < 0.01), although overall BRD incidence did not differ (P = 0.24) between treatments. The number of antimicrobial treatments required per steer diagnosed with BRD symptoms to recover from sickness was greater (P = 0.04) in CON vs. BAS calves. No treatment differences were detected (P ≥ 0.41) for mortality incidence, or proportion of steers removed from the experiment due to extreme sickness. Results from this experiment indicate BAS administration upon feedlot entry improved average daily gain by enhancing feed efficiency. Administration of BAS facilitated earlier detection of BRD and reduced the need for antimicrobial treatments. Collectively, these results suggest BAS administration as a promising strategy to benefit performance and immunocompetence of feedlot receiving cattle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Morel-Journel ◽  
E. Vergu ◽  
J.-B. Mercier ◽  
N. Bareille ◽  
P. Ezanno

AbstractThe transport of weaned calves from cow–calf producers to fatteners is a general concern for the young bull industry due to its documented negative impact on the welfare, health and performance of the animals. These transfers are often managed by intermediaries who transport weaned calves to sorting centres, where they are grouped into batches before being sent to fattening units. In this study, we present an algorithm to limiting these transfer distances by appropriately selecting the sorting centre through which they must go. We tested the effectiveness of this algorithm on historical data from a French beef producer organization managing 136,892 transfers using 13 sorting centres. The results show a decrease in the transfer distances compared to the historical record, especially for the calves travelling over long distances (− 76 km, i.e. 18% on average for the 33% longest transfers). Moreover, the distribution of calves between the sorting centres proposed by the algorithm reveals differences in their efficiency in minimizing transfer distances. In addition to its usefulness as a management tool for the daily transport of cattle, this algorithm provides prospects for improving the management of the sorting centres themselves.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1286
Author(s):  
Guangju Wang ◽  
Xiumei Li ◽  
Ying Zhou ◽  
Jinghai Feng ◽  
Minhong Zhang

This paper investigated the effects of heat stress on gut-microbial metabolites, gastrointestinal peptides, glycolipid metabolism, and performance of broilers. Thus, 132 male Arbor Acres broilers, 28-days-old, were randomly distributed to undergo two treatments: thermoneutral control (TC, 21 °C) and high temperature (HT, 31 °C). The results showed that the average daily gain (ADG), average daily feed intake (ADFI), and gastric inhibitory polypeptide (GIP) concentration in the jejunum significantly decreased the core temperature, feed conversion ratio (FCR), and ghrelin of the hypothalamus, and cholecystokinin (CCK) in jejunum, and serum significantly increased in the HT group (p < 0.05). Exploration of the structure of cecal microbes was accomplished by sequencing 16S rRNA genes. The sequencing results showed that the proportion of Christensenellaceae and Lachnospiraceae decreased significantly whereas the proportion of Peptococcaceae increased at the family level (p < 0.05). Ruminococcus and Clostridium abundances significantly increased at the genus level. Furthermore, the content of acetate in the HT group significantly increased. Biochemical parameters showed that the blood glucose concentration of the HT group significantly decreased, and the TG (serum triglycerides), TC (total cholesterol), insulin concentration, and the insulin resistance index significantly increased. Nonesterified fatty acid (NEFA) in the HT group decreased significantly. In conclusion, the results of this paper suggest that the poor production performance of broilers under heat stress may be related to short-chain fatty acids (SCFAs) fermented by intestinal microbiota involved in regulating metabolic disorders.


Genome ◽  
2015 ◽  
Vol 58 (12) ◽  
pp. 549-557 ◽  
Author(s):  
Everestus C. Akanno ◽  
Graham Plastow ◽  
Carolyn Fitzsimmons ◽  
Stephen P. Miller ◽  
Vern Baron ◽  
...  

The aim of this study was to identify SNP markers that associate with variation in beef heifer reproduction and performance of their calves. A genome-wide association study was performed by means of the generalized quasi-likelihood score (GQLS) method using heifer genotypes from the BovineSNP50 BeadChip and estimated breeding values for pre-breeding body weight (PBW), pregnancy rate (PR), calving difficulty (CD), age at first calving (AFC), calf birth weight (BWT), calf weaning weight (WWT), and calf pre-weaning average daily gain (ADG). Data consisted of 785 replacement heifers from three Canadian research herds, namely Brandon Research Centre, Brandon, Manitoba, University of Alberta Roy Berg Kinsella Ranch, Kinsella, Alberta, and Lacombe Research Centre, Lacombe, Alberta. After applying a false discovery rate correction at a 5% significance level, a total of 4, 3, 3, 9, 6, 2, and 1 SNPs were significantly associated with PBW, PR, CD, AFC, BWT, WWT, and ADG, respectively. These SNPs were located on chromosomes 1, 5–7, 9, 13–16, 19–21, 24, 25, and 27–29. Chromosomes 1, 5, and 24 had SNPs with pleiotropic effects. New significant SNPs that impact functional traits were detected, many of which have not been previously reported. The results of this study support quantitative genetic studies related to the inheritance of these traits, and provides new knowledge regarding beef cattle quantitative trait loci effects. The identification of these SNPs provides a starting point to identify genes affecting heifer reproduction traits and performance of their calves (BWT, WWT, and ADG). They also contribute to a better understanding of the biology underlying these traits and will be potentially useful in marker- and genome-assisted selection and management.


Sign in / Sign up

Export Citation Format

Share Document