scholarly journals PSII-26 Early- and mid- lactation milk traits are associated with piglet growth during lactation

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 373-374
Author(s):  
Lea A Rempel ◽  
William T Oliver ◽  
Miles R Jeremy

Abstract Preweaning piglet growth is tied to milk quality and consumption. To determine the relationship of milk components from parity 1–4 dams and piglet growth, early and mid-lactation (d 2 and 16) milk samples were collected from 48 litters and analyzed for protein, fat, somatic cell count, lactose, solids, total solids, and milk urea nitrogen. Each milk trait was categorically identified at 25, 50 or 75 percentiles as low, moderate, or high, respectively. Mixed models (SAS); dam repeated, sire random, and adjusted for parity and litter size; were used to determine association of individual milk traits with piglet lactation growth (gain calculated from body weights at birth, d10, and weaning; WN). Moderate levels of d2 milk protein were associated with the greatest gain during lactation in comparison to low and high levels (Table 1). High levels of d2 milk lactose and d2 solids were both related to piglet gain over the lactation period (Table 1). Evaluation of d16 milk traits with piglet gain over lactation indicated high levels of d16 fat, d16 solids, and d16 total solids had the greatest gain in comparison to moderate and low levels of each trait (Table 1). Within phase of lactation weight gain, association of d2 or d16 milk traits with early weight gain (birth to d10) or late weight gain (d10 to WN) were performed. The greatest early lactation gains (birth to d10) were associated with moderate levels of d2 protein, high levels of d2 lactose and d2 solids, and low levels of d2 MUN (Table 2). High levels of milk fat, lactose, and solids at d2 were associated with piglet gain during late lactation (d10 to WN; Table 3). In general, greater levels of lactose in d2 milk and fat in d16 milk were associated with piglet gain during lactation.

2017 ◽  
Vol 28 (3) ◽  
pp. 643
Author(s):  
Omar Vargas Villalobos ◽  
Oscar Cambronero Castro ◽  
Jorge Alberto Elizondo Salazar

Supplementing dairy cows with low in protein diets with specific amino acids is a promising strategy to counteract the potential negative effect of metabolizable protein deficiency on productivity. The objective of this study was to quantify the productive performance of lactating dairy cows and their milk quality when they are offered two diets with different crude protein (CP) concentration and when they are supplemented with methionine hydroxy analog (HMTBA). This study was carried out in a commercial dairy farm located in Alfaro Ruiz-Alajuela, Costa Rica, during the first semester of 2014. Twenty multiparous Holstein cows under a grazing system were grouped according to days in lactation and calving number. Two diets with different concentrations of CP (high 16.6% and 15.8% standard), with or without inclusion of HMTBA (25 g/TM) were studied in a 2x2 factorial arrangement. No significant effects (P>0.05) on milk production, 4% fat corrected milk, milk fat, milk protein, lactose, total solids or milk urea nitrogen (MUN) were found when including HMTBA. Feeding cows with high CP concentration significantly increased (P<0.05) MUN concentration from 18.33 to 20.70 mg/dl. Supplementing HMTBA to grazing cows did not have a significant response (P>0.05) regarding the different variables, and no financial return was found due to the fact that neither total milk production nor total solids were increased.


2018 ◽  
Vol 68 (3) ◽  
pp. 423 ◽  
Author(s):  
N. SIACHOS (Ν. ΣΙΑΧΟΣ) ◽  
N. PANOUSIS (Ν. ΠΑΝΟΥΣΗΣ) ◽  
G. ARSENOS (Γ. ΑΡΣΕΝΟΣ) ◽  
G. E. VALERGAKIS (Γ.Ε. ΒΑΛΕΡΓΑΚΗΣ)

Milk urea nitrogen (MUN) is an important tool in dairy cow nutrition, as it reflects the amount of nitrogen in the diet which is not used for production. The objective of this study was to evaluate MUN values in Greek dairy herds, for the first time, and to investigate the source of its possible variation. For this purpose, a dataset of 23,266 milk records from 24 Holstein herds in the region of Thessaly (Greece) was used. Descriptive statistics, analysis of variance and a multiple regression model were used for statistical analysis. Significant differences were observed among farms (P<0.05). Mean MUN concentration was 15.54 mg/dL. More than 90% of the measurements were above the upper limit of reference herd target-values. In contrast with previous observations, lower MUN values (P<0.05) were observed during the summer and autumn. A positive relationship between milk yield and MUN was observed, but only up to MUN values of 16 mg/dL. Milk fat content and fat/protein ratio were negatively related to MUN, while cows with higher protein content had lower MUN values (P<0.05). Most milk traits and sampling month explained only 25.8% of the variation in MUN concentration (P<0.05). In conclusion, MUN values in Greek dairy farms were greater than target-values suggested for most herds, indicating systematic nutritional errors that could affect health and reproductive performance of dairy cows.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ryszard Mordak ◽  
Zbigniew Dobrzański ◽  
Robert Kupczyński

AbstractTesting blood and milk parameters as well as analysing the relationships among these markers is very useful for monitoring the internal homeostasis and health in high-yielding dairy cows during various production periods. The aim of the study was to assess the correlations (relationships) among macro-minerals, such as calcium (Ca), inorganic phosphorus (P), magnesium (Mg), other selected bone profile markers, such as total protein (TP), albumin, activity of alkaline phosphatase (ALP) measured in serum and selected milk components such as number of somatic cells (SCC), colony-forming units (CFU), milk fat (MF), milk protein (MP), milk lactose (ML), dry matter (DM), non-fat dry matter (FDM) and milk production in late-lactation cows. Both blood and milk samples were collected from 11 clinically healthy milking cows during the late-lactation period. The cows were examined once a day for 3 consecutive days resulting in 33 sets of blood and milk samples for laboratory and statistical analysis. Significant correlations were observed between: Mg and MP, Mg and FDM, ALP and SCC, TP and SCC, TP and MP, TP and FDM, albumin and MP, albumin and FDM, P and Mg, Mg and albumin, and between TP and albumin. When monitoring macro-mineral homeostasis and mammary gland health, especially in intensively fed high-yielding dairy cows correlations between these markers should be considered. The revealed correlations can allow for deeper comparative laboratory diagnostics of homeostasis and can be especially useful for laboratory monitoring of the potential risk of subclinical macro-mineral deficiency in high-yielding dairy cows.


2010 ◽  
Vol 25 (2) ◽  
pp. 185-194
Author(s):  
Anna Svedberg ◽  
Tom Lindström

Abstract A pilot-scale fourdrinier former has been developed for the purpose of investigating the relationship between retention and paper formation (features, retention aids, dosage points, etc.). The main objective of this publication was to present the R-F (Retention and formation)-machine and demonstrate some of its fields of applications. For a fine paper stock (90% hardwood and 10% softwood) with addition of 25% filler (based on total solids content), the relationship between retention and formation was investigated for a microparticulate retention aid (cationic polyacrylamide together with anionic montmorillonite clay). The retention-formation relationship of the retention aid system was investigated after choosing standardized machine operating conditions (e.g. the jet-to-wire speed ratio). As expected, the formation was impaired when the retention was increased. Since good reproducibility was attained, the R-F (Retention and formation)-machine was found to be a useful tool for studying the relationship between retention and paper formation.


2020 ◽  
Author(s):  
Victoria A.A. Beunders ◽  
Jorine A. Roelants ◽  
Jessie M. Hulst ◽  
Dimitris Rizopoulos ◽  
Anita C.S. Hokken‐Koelega ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 842
Author(s):  
Ramūnas Antanaitis ◽  
Vida Juozaitienė ◽  
Dovilė Malašauskienė ◽  
Mindaugas Televičius ◽  
Mingaudas Urbutis ◽  
...  

The aim of our study was to determine how the ease of calving of cows may influence changes in lactose concentration and other milk components and whether these two factors correlate with each other. To achieve this, we compared data of calving ease scores and average percentage of in-line registered milk lactose and other milk components. A total of 4723 dairy cows from nine dairy farms were studied. The cows were from the second to the fourth lactation. All cows were classified according to the calving ease: group 1 (score 1)—no problems; group 2 (score 2)—slight problems; group 3 (score 3)—needed assistance; group 4 (score 4)—considerable force or extreme difficulty. Based on the data from the milking robots, during complete lactation we recorded milk indicators: milk yield MY (kg/day), milk fat (MF), milk protein (MP), lactose (ML), milk fat/lactose ratio (MF/ML), milk protein/lactose ratio (MP/ML), milk urea (MU), and milk electrical conductivity (EC) of all quarters of the udder. According to the results, we found that cows that had no calving difficulties, also had higher milk lactose concentration. ML > 4.7% was found in 58.8% of cows without calving problems. Cows with more severe calving problems had higher risk of mastitis (SCC and EC). Our data indicates that more productive cows have more calving problems compared to less productive ones.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1840
Author(s):  
Ramūnas Antanaitis ◽  
Vida Juozaitienė ◽  
Vesta Jonike ◽  
Vytenis Čukauskas ◽  
Danguolė Urbšienė ◽  
...  

The aim of this study was to assess the relationship between temperament and milk performance in cows at different stages of lactation, describing their productivity, metabolic status and resistance to mastitis. This study showed that with increasing lactation, cows’ temperament indicators decreased (p < 0.001) and they became calmer. The highest temperament score on a five-point scale was found in cows between 45 and 100 days of lactation. In the group of pregnant cows, we found more cows (p = 0.005) with a temperament score of 1–2 compared with non-pregnant cows A normal temperament was usually detected in cows with lactose levels in milk of 4.60% or more and when the somatic cell count (SCC) values in cow milk were <100,000/mL and 100,000–200,000/mL, with a milk fat-to-protein ratio of 1.2. A larger number of more sensitive and highly aggressive cows was detected at a low milk urea level. In contrast to a positive phenotypic correlation (p < 0.05), this study showed a negative genetic correlation between the temperament of cows and milk yield (p < 0.001). Positive genetic correlations between temperament scores and milk somatic cells (p < 0.001) and milk fat-to-protein ratio (p < 0.05) were found to indicate a lower genetic predisposition in cows with a calmer temperament to subclinical mastitis and ketosis. On the other hand, the heritability of temperament (h2 = 0.044–0.100) showed that only a small part of the phenotypic changes in this indicator is associated with genetic factors.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 228-228
Author(s):  
Keiffer Sexton ◽  
Megan Myerscough ◽  
Wesley Chapple ◽  
William T Meteer ◽  
Keela Trennepohl ◽  
...  

Abstract The objective was to evaluate the effects of maintaining cows in drylots vs pasture on beef cow performance. Spring-calving, Simmental × Angus cows (n = 108; 84 ± 11 d postpartum) were stratified by age, BW, BCS, calving date, and sex of calves and allotted to 6 groups. Groups were randomly assigned to 1 of 2 treatments for 110 d: drylot (DL) or pasture (PAST). Drylot cows were limit-fed a ration consisting of corn silage, dried distillers grains, hay, corn stalks, corn, and soybean hulls to meet protein and energy requirements. Cows on pasture were rotationally grazed and offered free-choice mineral. On d 0, cows were artificially inseminated (AI). On d 0, 53, and 110 (weaning), cow BW and BCS were measured. On d 54 milk production was estimated using the weigh-suckle-weigh technique. Data were analyzed using the MIXED procedure of SAS. All binary data were analyzed using the GLIMMIX procedure of SAS. On d 0 and 53, cow BW did not differ (P ≥ 0.73) between DL and PAST. On d 110, DL cows had 74 kg greater (P &lt; 0.01) BW than PAST cows. The BCS did not differ (P ≥ 0.66) between treatments. There was no difference in milk production (P = 0.93); however, drylot cows tended (P = 0.10) to have reduced milk fat percentage and had reduced (P &lt; 0.01) milk urea nitrogen. There was no difference (P ≥ 0.34) in AI or overall pregnancy rates between treatments. There was no difference in foot angle or claw set (P ≥ 0.17) of cows at any time point. There was also no difference (P = 0.17) in foot treatments between DL (39%) and PAST (4%). Housing cows in drylots compared to pasture increased BW, but did not affect BCS, milk production, and pregnancy rates.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 220
Author(s):  
Manuel J. Flores-Najera ◽  
Venancio Cuevas-Reyes ◽  
Juan M. Vázquez-García ◽  
Sergio Beltrán-López ◽  
César A. Meza-Herrera ◽  
...  

We tested whether the milk yield capacity of mixed-breed goats on a Chihuahuan desert rangeland in northern Mexico during the dry season affects milk composition, body weight gain, and weaning weight of their progeny. Milk yield and composition, and progeny postnatal growth performance, were recorded weekly. One week after kidding, mixed-breed goats (a mixture of Criollo × dairy breeds; n = 40) were allotted into medium (MP) or low (LP) milk yielding groups (20 goats per group). Mean 105-d total milk yield for MP and LP goats was 45.2 ± 12.5 and 20.7 ± 5.2 L, respectively. Milk lactose (4.3 vs. 4.2%) and solids-non-fat (SNF; 8.2 vs. 8.0) differed (p < 0.05) between MP and LP goats; milk protein content tended to differ (p = 0.08) between MP and LP goats with no difference for milk fat content (p > 0.05). Maternal body weight was positively associated with milk yield, milk lactose, and SNF content (p < 0.05 to p < 0.001). Goats giving birth to males produce more milk than goats giving birth to females, but milk fat percentage was higher in goats bearing females (p < 0.001). Milk yield and composition throughout lactation did not influence body weight gain (47.8 vs. 48.7 g/day for kids from MP and LP goats) and weaning weight (6.7 vs. 6.7 kg from MP and LP goats) of the offspring (p > 0.05). Birth weight and weaning weight of the progeny were positively related to maternal body weight (p ≤ 0.05). The postnatal growth of the kids was reduced, extending the time to reach market weight. Nevertheless, non-supplemented mixed-breed goats reared on semi-arid rangeland of northern Mexico have the potential for moderate milk production. Therefore, due to the limited nutrients ingested by grazing goats during the dry season, a nutritional supplement is necessary to keep up milk production and adequate growth of kids.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 708
Author(s):  
Moran Gershoni ◽  
Joel Ira Weller ◽  
Ephraim Ezra

Yearling weight gain in male and female Israeli Holstein calves, defined as 365 × ((weight − 35)/age at weight) + 35, was analyzed from 814,729 records on 368,255 animals from 740 herds recorded between 1994 and 2021. The variance components were calculated based on valid records from 2008 through 2017 for each sex separately and both sexes jointly by a single-trait individual animal model analysis, which accounted for repeat records on animals. The analysis model also included the square root, linear, and quadratic effects of age at weight. Heritability and repeatability were 0.35 and 0.71 in the analysis of both sexes and similar in the single sex analyses. The regression of yearling weight gain on birth date in the complete data set was −0.96 kg/year. The complete data set was also analyzed by the same model as the variance component analysis, including both sexes and accounting for differing variance components for each sex. The genetic trend for yearling weight gain, including both sexes, was 1.02 kg/year. Genetic evaluations for yearling weight gain was positively correlated with genetic evaluations for milk, fat, protein production, and cow survival but negatively correlated with female fertility. Yearling weight gain was also correlated with the direct effect on dystocia, and increased yearling weight gain resulted in greater frequency of dystocia. Of the 1749 Israeli Holstein bulls genotyped with reliabilities >50%, 1445 had genetic evaluations. As genotyping of these bulls was performed using several single nucleotide polymorhphism (SNP) chip platforms, we included only those markers that were genotyped in >90% of the tested cohort. A total of 40,498 SNPs were retained. More than 400 markers had significant effects after permutation and correction for multiple testing (pnominal < 1 × 10−8). Considering all SNPs simultaneously, 0.69 of variance among the sires’ transmitting ability was explained. There were 24 markers with coefficients of determination for yearling weight gain >0.04. One marker, BTA-75458-no-rs on chromosome 5, explained ≈6% of the variance among the estimated breeding values for yearling weight gain. ARS-BFGL-NGS-39379 had the fifth largest coefficient of determination in the current study and was also found to have a significant effect on weight at an age of 13–14 months in a previous study on Holsteins. Significant genomic effects on yearling weight gain were mainly associated with milk production quantitative trait loci, specifically with kappa casein metabolism.


Sign in / Sign up

Export Citation Format

Share Document