PSV-12 Nutrient Utilization of Black Soldier Fly-derived Feed Ingredients Is Affected by Growth Stage and Processing Method Based on in vitro Assays

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 198-199
Author(s):  
Hansol Kim ◽  
Eunjeong Jang ◽  
Sang Yun Ji ◽  
Beob Gyun G Kim

Abstract Sufficient supply of dietary phosphorus (P) is critical for maximizing muscle and bone growth of pigs. The objective was to compare standardized total tract digestible (STTD) P requirements of growing pigs determined in the experiments and those estimated using modeling approach. Fifty-two experiments in the literature that empirically determined P requirements of pigs were employed. The basis for the determination of P requirements were growth performance (average daily gain or gain to feed ratio; n = 34) and bone development (n = 23). Based on the STTD P in the feed ingredients provided in NRC (2012) and ingredient composition used in the experiments, P requirements presented as total P, available P, and true total tract digestible P were converted to STTD P requirements. To obtain STTD P requirements (g/d) suggested by NRC (2012) for grow-finishing pigs (body weight > 20 kg), mean body weight and sex indicated in the experiments were input into the NRC model. The statistical model for comparing the empirical data and the NRC requirements included the basis for determining P requirements in the experiments as a fixed variable and body weight as a random variable. To quantify the deviations between NRC STTD P requirement estimates and empirically determined STTD P requirements, mean percentage difference was calculated. The STTD P requirements empirically determined based on growth performance were greater than the NRC STTD P requirement estimates (5.89 vs. 4.61 g/d, SEM = 0.27; P < 0.001). Moreover, the bone development-based STTD P requirements were greater than the NRC STTD P requirement estimates (6.63 vs. 4.46 g/d, SEM = 0.42; P < 0.001). In conclusion, the standardized total tract digestible P requirements suggested by the NRC are less than the experimentally determined requirements.

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 204-205
Author(s):  
Hansol Kim ◽  
Bokyung Hong ◽  
Beob Gyun G Kim

Abstract Sufficient supply of dietary phosphorus (P) is critical for maximizing muscle and bone growth of pigs. The objective was to compare standardized total tract digestible (STTD) P requirements of growing pigs determined in the experiments and those estimated using modeling approach. Fifty-two experiments in the literature that empirically determined P requirements of pigs were employed. The basis for the determination of P requirements were growth performance (average daily gain or gain to feed ratio; n = 34) and bone development (n = 23). Based on the STTD P in the feed ingredients provided in NRC (2012) and ingredient composition used in the experiments, P requirements presented as total P, available P, and true total tract digestible P were converted to STTD P requirements. To obtain STTD P requirements (g/d) suggested by NRC (2012) for grow-finishing pigs (body weight > 20 kg), mean body weight and sex indicated in the experiments were input into the NRC model. The statistical model for comparing the empirical data with the NRC requirements included the basis for determining P requirements in the experiments as a fixed variable and body weight as a random variable. To quantify the deviations between NRC STTD P requirement estimates and empirically determined STTD P requirements, mean percentage difference was calculated. The STTD P requirements empirically determined based on growth performance were greater than the NRC STTD P requirement estimates (5.89 vs. 4.61 g/d, SEM = 0.27; P < 0.001). Moreover, the bone development-based STTD P requirements were greater than the NRC STTD P requirement estimates (6.63 vs. 4.46 g/d, SEM = 0.42; P < 0.001). In conclusion, the standardized total tract digestible P requirements suggested by the NRC are less than the experimentally determined requirements.


2021 ◽  
Vol 100 (1) ◽  
Author(s):  
Olufemi Oluwaseun Babatunde ◽  
Olayiwola Adeola

Abstract Two experiments were carried out to determine a time-series effect of phytase on phosphorus (P) utilization in growing and finishing pigs using growth performance, apparent total tract digestibility (ATTD) of nutrients, P excretion, and plasma concentrations of minerals as the response criteria for evaluation. In both experiments, treatments were arranged as a 3 × 4 factorial in a randomized complete block design with 3 corn–soybean meal-based diets including a P-adequate positive control (PC), a low-P negative control (NC; no inorganic P), and NC supplemented with phytase at 1,000 FYT/kg (NC + 1,000); and 4 sampling time points at days 7, 14, 21, and 28 in experiment 1, and days 14, 26, 42, and 55 in experiment 2. In both trials, 96 growing pigs with average body weight (BW) of 19.8 ± 1.16 and 49.8 ± 3.21 kg, respectively, were allocated to the 3 diets with 8 replicates pens (4 barrows and 4 gilts) and 4 pigs per pen. In experiment 1, pigs fed the PC had higher (P < 0.01) BW, average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) when compared with pigs fed the NC. There was an interaction (P < 0.01) between time and diet on the BW and ADG of pigs while a linear and quadratic increase (P < 0.01) was observed with the ADFI and G:F, respectively, over time. Phytase supplementation improved (P < 0.01) all growth performance responses. Pigs fed the PC had greater (P < 0.01) ATTD of P and Ca than pigs fed the NC. There was no interaction effect on the ATTD of nutrients. Phytase addition improved the ATTD of P and Ca over pigs fed the NC. There was an interaction (P < 0.01) between diet and time on the total and water-soluble P (WSP) excreted. There was a quadratic decrease (P < 0.01) in plasma concentration of Ca in pigs over time. In experiment 2, there was a quadratic increase (P < 0.01) in BW, ADG, and G:F of pigs over time. Similarly, the inclusion of phytase improved (P < 0.05) all growth performance parameters except ADFI. A linear increase (P < 0.05) in the ATTD of DM, P, and Ca occurred over time. Phytase inclusion improved (P < 0.01) the ATTD of P and Ca. Plasma concentrations of P were improved by phytase addition. Phytase supplementation of the NC reduced WSP excretion by 45%, 32%, and 35% over the growing, finishing, and entire grow-finish period, respectively. In conclusion, phytase improves the utilization of P in growing and finishing pigs; however, the magnitude of effect on responses may vary over time.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 65-66
Author(s):  
Woong B Kwon ◽  
Kevin J Touchette ◽  
Aude Simongiovanni ◽  
Kostas Syriopoulos ◽  
Anna Wessels ◽  
...  

Abstract The hypothesis that excess dietary Leu affects growth performance and metabolism of branched-chain amino acids (BCAA) in growing pigs was tested. Forty barrows (30.0 ± 2.7 kg) were placed in metabolism crates and randomly allotted to 5 diets that contained 100, 150, 200, 250, or 300% of the requirement for standardized ileal digestible Leu. Initial and final body weight of pigs and daily feed provisions were recorded. Urine and fecal samples were collected for 5 d to measure N balance and biological value of diets. At the conclusion of the experiment, blood, brain, liver, and muscle samples were collected and average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were calculated. Orthogonal polynomial contrasts were used to determine linear and quadratic effects of increasing Leu in the diets. Results indicated that ADG, ADFI, and G:F decreased (linear, P < 0.05) as dietary Leu increased (Table 1). A trend (linear, P = 0.082) for decreased N retention and decreased (linear, P < 0.05) biological value of protein was also observed. Plasma urea N increased (linear, P < 0.05) and a quadratic reduction (P < 0.05) in plasma serotonin and a linear reduction (P < 0.05) in cerebral serotonin were observed with increasing dietary Leu. Concentrations of BCAA in liver increased (linear, P < 0.001), concentrations of BCAA in muscle decreased (linear, P < 0.05), concentration of α-keto-isovalerate was reduced (linear and quadratic, P < 0.001) in liver, muscle, and serum, and α-keto-β-methylvalerate was reduced (linear and quadratic, P < 0.001) in muscle and serum, whereas α-keto-isocaproate increased (linear, P < 0.05) in liver and muscle, and in serum (linear and quadratic, P < 0.001) with increasing dietary Leu. In conclusion, excess dietary Leu reduced growth performance and cerebral serotonin and tended to reduce protein synthesis.


2020 ◽  
Vol 98 (1) ◽  
Author(s):  
M Shamimul Hasan ◽  
Mark A Crenshaw ◽  
Shengfa F Liao

Abstract Lysine is the first limiting amino acid (AA) in typical swine diets. Our previous research showed that dietary lysine restriction compromised the growth performance of late-stage finishing pigs, which was associated with the changes in plasma concentrations of nutrient metabolites and hormone insulin-like growth factor 1 (IGF-1). This study was conducted to investigate how dietary lysine restriction affects the plasma concentrations of selected metabolites and three anabolic hormones in growing pigs. Twelve individually penned young barrows (Yorkshire × Landrace; 22.6 ± 2.04 kg) were randomly assigned to two dietary treatments (n = 6). Two corn and soybean meal based diets were formulated to contain 0.65% and 0.98% standardized ileal digestible lysine as a lysine-deficient (LDD) and a lysine-adequate (LAD) diets, respectively. During the 8-week feeding trial, pigs had ad libitum access to water and their respective diets, and the growth performance parameters including average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were determined. At the end of the trial, jugular vein blood was collected for plasma preparation. The plasma concentrations of free AA and six metabolites were analyzed with the established chemical methods, and the hormone concentrations were analyzed with the commercial ELISA kits. Data were analyzed with Student’s t-test. The ADG of LDD pigs was lower (P &lt; 0.01) than that of LAD pigs, and so was the G:F (P &lt; 0.05) since there was no difference in the ADFI between the two groups of pigs. In terms of free AA, the plasma concentrations of lysine, methionine, leucine, and tyrosine were lower (P &lt; 0.05), while that of β-alanine was higher (P &lt; 0.01), in the LDD pigs. The total plasma protein concentration was lower (P &lt; 0.02) in the LDD pigs, whereas no differences were observed for the other metabolites between the two groups. No differences were observed in the plasma concentrations of growth hormone (GF), insulin, and IGF-1 between the two groups as well. These results indicate that the lack of lysine as a protein building block must be the primary reason for a reduced body protein synthesis and, consequently, the compromised G:F ratio and ADG. The changes in the plasma concentrations of total protein and four AA suggest that the compromised growth performance might be associated with some cell signaling and metabolic pathways that may not involve the GH/IGF-1 axis.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 81-82
Author(s):  
Ning Lu ◽  
Carine M Vier ◽  
Gustavo Silva ◽  
Luis E Zaragoza ◽  
Brandon Knopf ◽  
...  

Abstract Our objective was to determine the effects of increasing dietary standardized ileal digestible (SID) lysine (Lys) on the growth performance of grow-finish pigs. A total of 1,120 pigs (PIC 337×Camborough, initially 39.0±0.82 kg) were used in a 77-d study. Pigs used in the study were sired by boars ranked in the top 15% of a selected PIC elite boar stud based on index. Pens of pigs were blocked by body weight and randomly allotted to 1 of 5 treatments, which consisted of 85, 95, 105, 115, and 125% of the PIC2016 SID Lys recommendations within each phase. Diets were corn-soybean meal-based and formulated to be iso-caloric. Treatments were achieved with increasing feed-grade amino acids. There were 9 mixed-gender pens per treatment and 24 or 25 pigs per pen. Data were analyzed using generalized linear and nonlinear mixed models with pen as the experimental unit. Competing models included linear, quadratic polynomial (QP), broken-line linear (BLL), and broken-line quadratic (BLQ). Increasing dietary SID Lys from 85 to 125% marginally improved overall average daily gain (ADG, quadratic, P = 0.056), gain to feed ratio (G:F, quadratic, P = 0.062), and final body weight (linear, P = 0.075). There was no evidence for treatment effects on mortality and removals (P &gt; 0.10). The best-fitting models for ADG were QP and BLL. The QP model estimated the maximum ADG at 110.6% (95% CI: 93 to &gt;125%), with 99% of maximum ADG achieved at 97.4%. The BLL plateau was estimated at 105.0% (95% CI: 74 to 136%). The best-fitting model for G:F was QP, estimating the maximum G:F at 107.8% (95% CI: 92 to &gt;125%). In conclusion, the estimated optimum overall SID Lys for 39- to 119-kg pigs sired by high index boars ranged from 105.0 to 110.6% of PIC2016 SID Lys recommendation within each phase, depending on the response criteria and statistical model.


2020 ◽  
Vol 98 (10) ◽  
Author(s):  
Spenser L Becker ◽  
Stacie A Gould ◽  
Amy L Petry ◽  
Leah M Kellesvig ◽  
John F Patience

Abstract The objective of this experiment was to evaluate the growth performance and bone mineral content (BMC) of nursery pigs in response to increasing total calcium (Ca) to available phosphorus (aP) ratios in diets containing phytase (250 FTU/kg; Natuphos E, BASF, Florham Park, NJ). A total of 480 nursery pigs (body weight (BW) = 5.7 ± 0.6 kg) with 10 pigs per pen and 7 pens per treatment (6 pens fed 2.75:1 diet) were allotted to seven treatments consisting of increasing ratios of calcium to available phosphorus (Ca:aP): 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, and 2.75. From day −7 to 0, pigs were fed a common diet. They were then fed the treatment diets during two experimental phases from day 1 to 14 and 15 to 28, respectively. Available P was formulated to 0.33% and 0.27% (approximately 90% of requirement) in dietary phases 1 and 2, respectively. BW, average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were determined. BMC of the femur was measured on day 28 on one pig per pen using dual x-ray absorptiometry. Data were analyzed as a linear mixed model using PROC MIXED (SAS, 9.3). Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of increasing the Ca:aP. Over the 28-d experimental period, increasing Ca:aP resulted in a linear decrease in ADG (353, 338, 328, 304, 317, 291, and 280 g/d; P &lt; 0.01), ADFI (539, 528, 528, 500, 533, 512, and 489 g/d; P &lt; 0.05), and G:F (0.68, 0.66, 0.64, 0.62, 0.61, 0.59, and 0.58; P &lt; 0.01). Increasing Ca:aP also resulted in decreased BW on days 14 and 28 (P &lt; 0.01). The BMC of the femur decreased with increasing Ca:aP (6.2, 6.3, 5.7, 5.9, 5.5, 5.6, and 5.3 g; P &lt; 0.05). Regression analysis explained the impact of Ca:aP as follows on ADG (ADG [g/d] = 339 − 36x; r2 = 0.81), G:F (G:F = 0.61 – 0.03x; r2 = 0.72), and BMC (BMC [g] = 6.4 – 0.27x; r2 = 0.43), where x is the Ca:aP. In conclusion, all outcomes indicated that any level of calcium above the minimum used in this experiment impaired growth performance and skeletal development. Further research using even lower levels of dietary Ca is warranted.


2016 ◽  
Vol 96 (2) ◽  
pp. 243-251 ◽  
Author(s):  
H. Lu ◽  
A. Preynat ◽  
V. Legrand-Defretin ◽  
P.A. Geraert ◽  
O. Adeola ◽  
...  

Effect of carbohydrases and phytase supplementation on growth performance, nutrient utilization and gut health of nursery pigs was evaluated. Pigs were blocked by body weight (BW) and sex and allocated to four treatments. Treatments were a positive control (PC), a negative control (NC) deficient in metabolizable energy (ME), crude protein (CP), Ca, and non-phytate P (nPP), NC plus Rovabio® Max AP enzyme mix, at 0.05 and 0.075 g kg−1. Apparent total tract digestibility (ATTD) was determined in faecal samples. Apparent ileal digestibility (AID) was determined in ileal digesta samples collected after euthanasia. Lower final BW and average daily gain (ADG) (P < 0.05) were observed in NC compared with PC. Enzyme at 0.05 g kg−1increased (P < 0.05) BW on d 14 and d 41, respectively, and also increased ADG. Enzyme at 0.075 g kg−1increased BW on d 14 and ADG on d 0 to d 14 (P < 0.05). Feed efficiency [gain to feed ratio (G:F)] was greater (P < 0.05) in PC than NC from d 15 to d 41 and from d 0 to d 41. No difference in G:F was observed with enzyme supplementation. Higher (P < 0.05) serum Ca and bone ash were observed in PC than NC. Enzyme increased the ATTD of Ca and P (P < 0.05) compared with NC.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Elijah G Kiarie ◽  
Conor Voth ◽  
Doug Wey ◽  
Cuilan Zhu ◽  
Lee-Anne Huber ◽  
...  

Abstract Growth performance, liver and spleen weight, plasma, and ceca digesta metabolites and incidences of diarrhea were investigated in growing pigs fed spent biomass of Pichia kudriavzevii. Ninety six barrows (~25 kg, 4 pigs/pen) were fed 1 of 4 experimental diets (n = 6) for 7 weeks. The diets were control, corn-, and soybean meal-based diet or control plus 2.5%, 3.75%, or 5.0% P. kudriavzevii. Diets were formulated to be isocaloric and iso nitrogenous. Feed intake and body weight (BW) were recorded weekly for calculation of average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F). Fecal scores were taken 3 d/wk to assess incidence and severity of diarrhea. One pig/pen close to pen average was bled for plasma metabolites on days 7 and 49 and subsequently euthanized for spleen and liver weight, ileal and cecum digesta samples for concentration of short-chain fatty acids (SCFA). The concentration of crude protein, crude fat, and non-fiber carbohydrates in P. kudriavzevii biomass was 36.4%, 9.6%, and 50.8% DM, respectively. Inclusion of P. kudriavzevii tended (P = 0.06) to linearly reduce ADG from days 8 through 49 resulting in a trend (P = 0.06) for linear reduction in the final BW. The final BW was 79.0, 79.2, 76.8, and 75.5 kg for the 0%, 2.5%, 3.75%, and 5.0% P. kudriavzevii, respectively. Diets had no effect (P &gt; 0.10) on ADFI, G:F, spleen, and liver weight throughout the entire experiment. On day 7, there was cubic (P = 0.03) decrease and quadratic (P = 0.02) increase in plasma concentration of creatinine and urea N, respectively. However, there were no (P &gt; 0.10) diet effects on plasma metabolites on day 49. There was a tendency (P = 0.08) for linear increase in cecum digesta concentration of acetic acid. There were no diet effects (P &gt; 0.10) on fecal score in the first 4 wk of feeding. In conclusion, feeding P. kudriavzevii yeast tended to depress growth and stimulate cecum fermentation at higher dose and had no detrimental effects on organ weights or plasma metabolites in growing pigs.


2019 ◽  
Vol 99 (4) ◽  
pp. 840-847
Author(s):  
X. Liu ◽  
Y.S. Han ◽  
I.H. Kim

The present experiment was to evaluate the effects of dietary Spirulina (SP) supplementation in growing pigs. A total of 140 pigs [(Landrace × Yorkshire) × Duroc, 25.32 ± 1.36 kg] were randomly distributed to one of four treatments: control, basal diet; treatment 1, basal diet + 0.025% SP; treatment 2, basal diet + 0.050% SP; and treatment 3, basal diet + 0.100% SP. Growing pigs fed 0.050% SP diet had greater (P < 0.05) body weight and fecal Lactobacillus counts compared with pigs fed basal diet. Average daily gain and gain to feed ratio were greater (P < 0.05) in pigs fed 0.050% and 0.100% SP diets as compared with pigs fed basal diet. The apparent total tract digestibility (ATTD) of dry matter (DM) and superoxide dismutase (SOD) activity for pigs fed 0.050% SP diet tended to increase compared with pigs fed basal diet (P < 0.10). Pigs fed 0.025%, 0.050%, and 0.100% SP had a higher (P < 0.05) glutathione peroxidase (GPx) activity than pigs fed basal diet. In conclusion, SP supplementation improved growth performance and ATTD of DM, increased the SOD and GPx activity, and enhanced the fecal Lactobacillus counts in growing pigs.


2020 ◽  
Vol 33 (3) ◽  
pp. 159-171
Author(s):  
Paige K Isensee ◽  
Sarah E ◽  
Lindsey G Wichman ◽  
Autumn L Thoma ◽  
Young D Jang

Background: Creep feed is offered to suckling piglets to introduce solid feed and provide extra nutrients in late lactation. However, the effect of creep feed is inconsistent; there is little information about the effect of creep diet complexity on piglet performance. Objective: Two experiments were conducted to evaluate the effect of creep feed and its complexity on growth performance of suckling and weaned pigs. Methods: In Exp. 1, eight litters (average 19.9 ± 1.1 d of age; initial piglet weight: 6.74 ± 1.2 kg) were allotted to two dietary treatments considering breed, litter size and weight, as follows: no creep feed (n=3) and creep feed (n=5; offered for 8 days before weaning). At weaning (d 28 of age), the pigs were divided into three treatments (6 pigs/pen, 3 replicates; initial body weight: 9.66 ± 0.34 kg) balanced by gender, body weight, and breed, as follows: creep feed eaters, creep feed non-eaters, and no creep feed. In Exp. 2, two different types of creep feed were offered to suckling piglets (initial piglet weight: 3.79 ± 0.55 kg) in seven litters from d 12 of age (average 12.0 ± 1.3 d of age) to weaning (d 25 of age). Treatments were: HCF (n=4): highly-complex creep diet containing 3% fish meal, 2.4% blood meal, and 15% whey; and 2) LCF (n=3): lowly-complex creep diet without the mentioned ingredients. At weaning, only eater pigs were divided into 2 treatments (6 pigs/pen, 3 replicates; initial body weight: 7.53 ± 0.97 kg) balanced by gender, breed and body weight as follows: HCF eaters and LCF eaters. In both experiments, creep feed was mixed with 1% Cr2O3 to measure fecal color for eater/non-eater categorization and the pigs were fed a common nursery diet for 21 days. Results: In both experiments, there were no differences on piglet weaning weight and overall nursery growth performance among the treatments. In Exp. 2, the creep feed intake and percentage of eaters per litter were not different between the HCF and LCF treatments, whereas the HCF eaters tended to have a greater average daily gain (p=0.08) and gain to feed ratio (p=0.09) than the LCF eaters during d 7-14 postweaning. Conclusion: Creep feed did not affect overall piglet growth in suckling and nursery phases, but its complexity might affect pig growth in the early nursery phase.


Sign in / Sign up

Export Citation Format

Share Document