PSIX-21 Assessment of barrier function and cell junctional expression on differentiated intestinal porcine epithelial cells in response to Salmonella LPS challenge and treatment with Yeast cell wall products

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 496-496
Author(s):  
Niall Browne ◽  
Daniel Daly ◽  
Karina Horgan

Abstract Mannan rich fractions were previously demonstrated to improve junctional gene expression which can reduce leaky intestinal tracts that facilitate bacterial infection in piglets. The work here assessed MRF and other yeast mannan products’ effects on intestinal barrier function in response to bacterial challenge from Salmonella LPS. Differentiated IPEC cells were grown to 14 days until a trans-epithelial electrical resistance reading (TEER) of ~ 4500 Ohms/cm2 was reached. Prior to lipopolysaccharide (LPS) (1µg/mL) challenge, cells were pre-treated and post-treated with MRF or yeast products A, B, and C (16mg/mL). Post treated cells were lysed in RLT buffer and RNA isolated (RNeasy). RIN values above 7 were used to synthesise cDNA (SuperScript®-III). Junctional genes Occludin, Claudin3 and Tight junction protein1 (TJP1) were assessed by qPCR (Applied Biosystems 7500 Fast). TNFα proinflammatory secretion was measured by ELISA. Three independent biological replicates were performed, with One-way ANOVA carried out unless stated otherwise. TEER results showed MRF significantly recovered barrier function (5090.3±187.0, P ≤ 0.05) over the positive control (PC) (3754.2±605.8) while product A (3502.5±182.7749), B (3414.289±733.8854) and C (3938.4±491.4) demonstrated no significant improvement to the PC. MRF treated cells were significantly higher for Claudin3 gene expression (1.33±0.18, P ≤ 0.05) over the control (0.671661±0.277) and treatments A (0.53±0.16, P ≤ 0.05), B (0.91±0.18, P ≤ 0.05) and C (0.69±0.25, P ≤ 0.05). Occludin expression was significantly higher in MRF treated cells (1.09±0.01, P ≤ 0.05) over the PC (0.89±0.09, P ≤ 0.05) and treatment B (0.88±0.04, P ≤ 0.05). TJP-1 gene expression was highest in the MRF treated cells (1.30±0.41) but not significantly, compared to the PC (1.00±0.14). TNFα (pg/mL) protein secretion was significantly lower in both the MRF treated (0.0809±0.86x10-3, P ≤ 0.05) and treatment C 0.081±0.18 x10-3, P ≤ 0.05) over the PC (0.0813±0.22x10-3). MRF augmented junctional expression improving TEER readings and potentially lessened LPS intracellular leakage that led to lower proinflammatory protein secretion. The present study highlights differences in efficacy of a variety of yeast cell wall products.

2020 ◽  
Vol 11 ◽  
Author(s):  
Runze Quan ◽  
Chaoyue Chen ◽  
Wei Yan ◽  
Ying Zhang ◽  
Xi Zhao ◽  
...  

B cell-activating factor (BAFF) production is increased in septic patients. However, the specific role of BAFF in sepsis remains unknown. This study was designed to investigate the expression and function of BAFF in an experimental endotoxemia model and to identify the potential mechanisms. We established an endotoxemia mouse (6–8 weeks, 20–22 g) model by administering 30 mg/kg lipopolysaccharide (LPS). BAFF levels in the circulating system and organ tissues were measured 4 and 8 h after LPS injection. Survival rates in the endotoxemia mice were monitored for 72 h after BAFF blockade. The effects of BAFF blockade on systemic and local inflammation, organ injuries, and intestinal barrier function were also evaluated 4 h after LPS treatment. BAFF production was systemically and locally elevated after LPS challenge. BAFF blockade improved the survival rate, systemic inflammation, and multi-organ injuries. Moreover, BAFF blockade attenuated both intestinal inflammation and impaired intestinal permeability. BAFF blockade upregulated ZO-1 and occludin protein levels via the NF-κB/MLCK/MLC signaling pathway. These results suggested that BAFF blockade protects against lethal endotoxemia at least partially by alleviating inflammation, multi-organ injuries, and improving intestinal barrier function and provides a novel focus for further research on sepsis and experimental evidence for clinical therapy.


2020 ◽  
Vol 98 (1) ◽  
Author(s):  
Jiao Song ◽  
Qinghe Li ◽  
Nadia Everaert ◽  
Ranran Liu ◽  
Maiqing Zheng ◽  
...  

Abstract We investigated the effects of inulin on intestinal barrier function and mucosal immunity in Salmonella enterica serovar Enteritidis (SE)–infected specific pathogen-free (SPF) chickens. SPF chickens (n = 240, 1-d-old) were divided into 4 groups (6 replicates per group, 10 chickens per replicate): a control group (CON) fed a basal diet without inulin supplementation and 3 SE-infected groups fed a basal diet supplemented with inulin 0% (SE group), 0.5% (0.5% InSE group), and 1% (1% InSE group), respectively. At 28 d of age, the chickens in SE-infected groups were orally infected with SE and in CON group were administrated with phosphated-buffered saline (PBS). Intestinal morphology, mucosal immunity, and intestinal barrier function-related gene expression were analyzed at 1- and 3-d post-infection (dpi). SE challenge significantly increased the mucosal gene expression, such as interleukin-1β (IL-1β), lipopolysaccharide-induced tumor necrosis factor factor (LITAF), interferon-γ (IFN-γ), and interleukin-6 (IL-6), and increased serum IFN-γ, secretory IgA (sIgA), and IgG concentration, and significantly decreased the gene expression levels of mucin 2 (MUC2) and claudin-1 at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation improved the expression levels of these immunity- and intestinal barrier function-related genes, increased villus height (VH), and decreased crypt depth (CD) in the duodenum, jejunum, and ileum at 1 and 3 dpi within the SE-challenged groups (P < 0.05). SE challenge significantly increased ileal Toll-like receptor 4 (TLR4) mRNA at 1 and 3 dpi, suppressor of cytokine signaling 3 (SOCS3) mRNA at 1 dpi, and phospho-signal transducer and activator of transcription 3 (p-STAT3) and Janus kinase1 (JAK1) protein expression at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation suppressed p-STAT3 and JAK1 protein expression and promoted ileal TLR4 and SOCS3 mRNA expression at 3 dpi compared with SE group (P < 0.05). In conclusion, inulin alleviated SE-induced gut injury by decreasing the proinflammatory response and enhancing mucosal immunity in chickens.


2016 ◽  
Vol 150 (4) ◽  
pp. S114-S115
Author(s):  
Robert Fedorak ◽  
Naomi Hotte ◽  
HeeKuk Park ◽  
Ammar H. Keshteli ◽  
Ruth Ginter ◽  
...  

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 333-334
Author(s):  
Hyunjin Kyoung ◽  
Myungwoo Cho ◽  
Hanbae Lee ◽  
Sangwoo Park ◽  
Joowon Kang ◽  
...  

Abstract The study was conducted to investigate effects of yeast cell wall product on growth performance, immune responses, and gene expression of tight junction proteins of weaned pigs. A total of 112 weaned pigs (7.98 ± 0.43 kg BW) were randomly assigned to 2 dietary treatments (8 pigs/pen; 7 replicates/treatments) for 4 weeks in a randomized complete block design (block = BW). Dietary treatments were 1) a commercial basal nursery diet (CON) and 2) CON + 0.05% yeast cell wall product (YCW, EasyBio Inc., Seoul, Korea). Blood was collected from one randomly selected pig per pen on d 0, 7, and 14 after weaning. The randomly selected one pig per replicate was euthanized to collect ileum tissue samples at the end of the experimental period. Measurements were growth performance, number of white blood cells (WBC) by an automated hematology analyzer calibrated for porcine blood, cortisol, tumor necrosis factor-α (TNF-α), transforming growth factor-β1, interleukin-1β (IL-1β), and interleukin-6 (IL-6) by the ELISA, and gene expression of tight junction in ileum tissues. Data were analyzed using the PROC GLM procedure of SAS. The statistical model for every measurement included dietary effect and BW as a covariate. Pigs fed YCW had higher (P < 0.10) ADG than those fed CON during overall experimental period. Pigs fed YCW had lower WBC on d 14 (P < 0.10), TNF-α on d 7 (P < 0.10), and decreased IL-1β on d 14 (P < 0.05) than those fed CON. In addition, The YCW increased (P < 0.05) expression of Claudin family, Occludin, Muc1, INF-α, and IL-6, but decreased (P < 0.05) expression of TNF-α genes in the ileum tissues compared with CON. In conclusion, addition of yeast cell wall product in the nursery diet improved growth performance and gut health and modified immune responses of weaned pigs.


2020 ◽  
Vol 98 (5) ◽  
Author(s):  
Bonjin Koo ◽  
Janghan Choi ◽  
Chengbo Yang ◽  
Charles Martin Nyachoti

Abstract The aim of this study was to investigate the effects of diet complexity and l-Thr supplementation level on the growth performance, immune response, intestinal barrier function, and microbial metabolites in nursery pigs. Thirty-two weaned pigs (body weight 7.23 ± 0.48 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement based on diet complexity (complex or simple) and dietary Thr content. The complex diet contained fish meal, plasma protein, and dried whey to mimic a conventional nursery diet. The simple diet was formulated with corn, wheat, and soybean meal and did not contain any animal products. l-Thr was supplemented to each diet to supply either 100% (STD Thr) or 115% (SUP Thr) of the NRC (2012) requirement for standardized ileal digestible Thr. Pigs were individually housed and fed experimental diets ad libitum for 14 d. Diet complexity, dietary Thr content, and their interactions were considered the main effects. Pigs fed the simple diet had greater (P < 0.05) plasma interleukin (IL)-10 and IL-6 concentrations compared with those fed the complex diet on days 7 and 14, respectively. Simple diet-fed pigs tended to show greater (P < 0.10) expression of genes encoding for tumor necrosis factor-α, claudin-1, and zonula occludens-1 in the jejunum compared with complex diet-fed pigs. The simple diet-fed pigs had greater (P < 0.05) concentrations of NH3-N in the jejunum digesta than did complex diet-fed pigs. The SUP Thr increased (P < 0.05) villus height and goblet cell (GC) density in villi and crypts in the jejunum and deepened (P < 0.05) crypts in the proximal colon. The SUP Thr resulted in the upregulation (P < 0.05) of occludin gene expression and a tendency toward the downregulation (P = 0.10) of IL-6 gene expression in the jejunum. Interactions (P < 0.05) between diet complexity and l-Thr supplementation level were observed in GC density in the crypt, NH3-N concentration in the jejunum, and the contents of acetate, propionate, and total volatile fatty acids in the colon. In conclusion, feeding a simple diet to nursery pigs resulted in systemic and intestinal inflammation. The SUP Thr diet did not normalize the simple diet-induced inflammation but improved gut integrity. SUP Thr seems to have greater benefits with a simple diet than with a complex diet. Therefore, SUP Thr in a simple diet could be a beneficial nutritional strategy for enhancing gut health.


2012 ◽  
Vol 91 (7) ◽  
pp. 1660-1669 ◽  
Author(s):  
R. Xiao ◽  
R.F. Power ◽  
D. Mallonee ◽  
K. Routt ◽  
L. Spangler ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 449 ◽  
Author(s):  
Shinpei Kawakami ◽  
Ryouichi Ito ◽  
Hiroko Maruki-Uchida ◽  
Asuka Kamei ◽  
Akihito Yasuoka ◽  
...  

Amazake is a traditional Japanese beverage. Its main ingredients are sake cake and rice malt. In this study, we examined the effect of sake cake and rice malt on the intestinal barrier function and gut microbiota. BALB/c mice were fed a control diet or a diet containing a mixture of sake cake and rice malt powder (SRP) for four weeks. Fecal IgA values did not change between groups, but the fecal mucin level was significantly greater in the SRP-fed group. Gene expression analysis in the ileum by real-time PCR demonstrated Muc2 expression did not change, while the Muc3 expression was upregulated in the SRP-fed group. Furthermore, microbiota analysis demonstrated a change by SRP intake at the family level, and the proportion of Lactobacillaceae significantly increased in the SRP-fed group. At the genus level, the proportion of Lactobacillus also significantly increased in the SRP-fed group. These results suggest that the intake of a mixture of sake cake and rice malt improves intestinal barrier function by increasing mucin levels and inducing changes in intestinal microbiota.


2020 ◽  
Author(s):  
Qianqian Xu ◽  
Xiaoting Zou ◽  
Xinyang Dong

Abstract BackgroundLinoleic acid (LA) is predominantly essential for poultry. Deficiency of LA in poultry were manifested in various aspects such as retarded growth and reduced resistance to disease. The effects of LA on intestinal health in vitro and in mammals has been studied, whereas research related to the effects of LA on intestine health in poultry was scanty. Intestinal health and immune function play an important role in pigeon squab growth. Considering squabs are fed by their parents, the purpose of this study was to explore the effects of maternal dietary LA on intestinal barrier function in squabs by determining intestinal morphology, gene expression of tight junction protein, immune cytokines, and microbial flora.ResultsA completely randomized design with a control group, 1% dietary LA supplementation group, 2% dietary LA supplementation group, and 4% dietary LA supplementation group was used. Six squabs from each treatment were randomly sampled at 21 posthatch. Results indicated that LA supplementation improved intestinal morphology as reflected by increased villus height, villus area and the ratio of villus to crypt, and the promotion at dosage of 1% was most significant. Besides, 1% LA supplementation elevated distribution density of goblet cell in intestine, and strengthened tight junction between enterocytes by up-regulating claudin3 and occludin gene expression, but down-regulating claudin2 gene expression. Moreover, 1% LA supplementation reduced secretion of pro-inflammation cytokines and increased anti-inflammation cytokines partly. The diversity index Chao1 of intestinal microbiota in 1% LA supplementation group was higher than other groups. And Butyrivibrio as beneficial bacteria was the biomarker of LA1%. However, excessive (4%) LA supplementation led to adverse impact on intestinal immunity and microbiota.ConclusionsMaternal dietary LA in three levels all could improve intestinal morphology in squabs. Therein, appropriate dosage (1%) supplementation might enhance mucosal protection and epithelium barrieer in squabs, and furthermore consolidated intestine immunity and luminal microbial environment. However, excessive (4%) LA supplementation might lead to adverse impact on immunity and microbiota. Maternal dietary LA might alter intestinal barrier function in pigeon squabs in a dose-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document