scholarly journals 449 Late-Breaking: Impact of feeding a propriety yeast-based synbiotic product on fecal shedding of top-7 Shiga toxin-producing Escherichia coli in feedlot cattle

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 141-141
Author(s):  
Raghavendra Amachawadi ◽  
Xiaorong Shi ◽  
LeighAnn George ◽  
Miles Theurer ◽  
Twig Marston ◽  
...  

Abstract Shiga toxin-producing E. coli (STEC) belonging to serogroups O26, O45, O111, O103, O121, O145, and O157, called ‘top-7’, are major foodborne pathogens. Cattle are a major reservoir, in which STEC colonize the hindgut and are shed in the feces, which is a major source of contamination of food. Our objective was to evaluate the impact of a proprietary yeast-based synbiotic product (prebiotic and probiotic; Alltech, Inc., Nicholasville, KY) on fecal shedding of top-7 STEC in feedlot cattle. Twenty existing pens, housing 40–112 steers per pen, with an estimated 60 to 90 days to slaughter, were randomly assigned to a control group or a treatment group that received 22 g of the synbiotic product per steer per day, as a top dress, in a finishing diet. Twenty pen-floor fecal samples were collected from each pen on days 0, 21, 42, and 54. Fecal samples were enriched and subjected to a multiplex PCR assay targeting serogroup-specific genes for the top-7 STEC and three major virulence genes, stx1 (Shiga toxin 1), stx2 (Shiga toxin 2), and eae (intimin). Bivariate descriptive statistics for the major serogroups and virulence genes were assessed prior to multivariable analysis using mixed effects logistic regression. The overall prevalence of the top-7 serogroups were 44.5% of O26, 41.3% of O157, 15.1% of O103, 13.7% of O45, 7.8% of O121, and 0.6% of O111. The overall prevalence of stx1, stx2, and eae were 43.9%, 70.8%, and 49%, respectively. E. coli O26, O157, and O45 had a significant treatment and sampling day interaction (P < 0.0001). On d 42, fecal samples from treated group had lower prevalence (P < 0.01) of O26, O103, and O45 compared to the control group. In conclusion, the in-feed administration of the synbiotic product appears to reduce fecal shedding of certain top-7 STEC serogroups in the feedlot cattle.

2014 ◽  
Vol 77 (5) ◽  
pp. 732-737 ◽  
Author(s):  
N. CERNICCHIARO ◽  
D. G. RENTER ◽  
C. A. CULL ◽  
Z. D. PADDOCK ◽  
X. SHI ◽  
...  

The objectives of this study were to determine whether fecal shedding of non-O157 Shiga toxin–producing Escherichia coli (STEC) in feedlot cattle was affected by the use of an E. coli O157:H7 vaccine or a direct-fed microbial (DFM) and whether the shedding of a particular non-O157 STEC serogroup within feces was associated with shedding of O157 or other non-O157 STEC serogroups. A total of 17,148 cattle in 40 pens were randomized to receive one, both, or neither (control) of the two interventions: a vaccine based on the siderophore receptor and porin proteins (E. coli SRP vaccine, two doses) and a DFM product (low-dose Bovamine). Fresh fecal samples (30 samples per pen) were collected weekly from pen floors for four consecutive weeks beginning approximately 56 days after study allocation. DNA extracted from enriched samples was tested for STEC O157 and non-O157 serogroups O26, O45, O103, O111, O121, and O145 and for four major virulence genes (stx1, stx2, eae, and ehxA) using an 11-gene multiplex PCR assay. Generalized linear mixed models were used to analyze the effects of treatments and make within-sample comparisons of the presence of O-serogroup–specific genes. Results of cumulative prevalence measures indicated that O157 (14.6%), O26 (10.5%), and O103 (10.3%) were the most prevalent STEC O serogroups. However, the vaccine, DFM, or both had no significant effect (P > 0.05) on fecal prevalence of the six non-O157 STEC serogroups in feedlot cattle. Within-sample comparisons of the presence of STEC serogroup–specific genes indicated that fecal shedding of E. coli O157 in cattle was associated with an increased probability (P < 0.05) of fecal shedding of STEC O26, O45, O103, and O121. Our study revealed that neither the E. coli O157:H7 vaccine, which reduced STEC O157 fecal shedding, nor the DFM significantly affected fecal shedding of non-O157 STEC serogroups, despite the fact that the most prevalent non-O157 STEC serogroups tended to occur concurrently with O157 STEC strains within fecal samples.


2014 ◽  
Vol 77 (7) ◽  
pp. 1052-1061 ◽  
Author(s):  
ABEL B. EKIRI ◽  
DOUGLAS LANDBLOM ◽  
DAWN DOETKOTT ◽  
SUSAN OLET ◽  
WEILIN L. SHELVER ◽  
...  

Cattle are the main reservoirs for Shiga toxin–producing Escherichia coli (STEC) strains. E. coli O26, O45, O103, O111, O121, O145, and O157 are among the STEC serogroups that cause severe foodborne illness and have been declared as adulterants by the U.S. Department of Agriculture, Food Safety and Inspection Service. The objectives of this study were (i) to estimate the prevalence of non-O157 STEC and E. coli O157 in naturally infected beef cows and in steer calves at postweaning, during finishing, and at slaughter and (ii) to test non-O157 STEC isolates for the presence of virulence genes stx1, stx2, eaeA, and ehlyA. Samples were collected from study animals during multiple sampling periods and included fecal grabs, rectal swabs, and midline sponge samples. Laboratory culture, PCR, and multiplex PCR were performed to recover and identify E. coli and the virulence genes. The prevalence of non-O157 STEC (serogroups O26, O45, O103, O111, O121, O113, and O145) fecal shedding ranged from 8% (4 of 48 samples) to 39% (15 of 38 samples) in cows and 2% (1 of 47 samples) to 38% (9 of 24 samples) in steer calves. The prevalence of E. coli O157 fecal shedding ranged from 0% (0 of 38 samples) to 52% (25 of 48 samples) in cows and 2% (1 of 47 samples) to 31% (15 of 48 samples) in steer calves. In steer calves, the prevalence of non-O157 STEC and E. coli O157 was highest at postweaning, at 16% (15 of 96 samples) and 23% (22 of 96 samples), respectively. Among the 208 non-O157 STEC isolates, 79% (164 isolates) had stx1, 79% (165 isolates) had stx2, and 58% (121 isolates) had both stx1 and stx2 genes. The percentage of non-O157 STEC isolates encoding the eaeA gene was low; of the 165 isolates tested, 8 (5%) were positive for eaeA and 135 (82%) were positive for ehlyA. Findings from this study provide further evidence of non-O157 STEC shedding in beef cows and steer calves particularly at the stage of postweaning and before entry into the feedlot.


2011 ◽  
Vol 74 (6) ◽  
pp. 912-918 ◽  
Author(s):  
K. L. SWYERS ◽  
B. A. CARLSON ◽  
K. K. NIGHTINGALE ◽  
K. E. BELK ◽  
S. L. ARCHIBEQUE

Beef steers (n = 252) were used to evaluate the effects of dietary supplement on fecal shedding of Escherichia coli O157:H7. Seven pens of 9 steers (63 steers per treatment) were fed diets supplemented with or without yeast culture (YC) or monensin (MON) and their combination (YC × MON). YC and MON were offered at 2.8 g/kg and 33 mg/kg of dry matter intake, respectively. Environmental sponge samples (from each pen floor, feed bunk, and water trough) were collected on day 0. Rectal fecal grab samples were collected on days 0, 28, 56, 84, 110, and 125. Samples were collected and pooled by pen and analyzed for presumptive E. coli O157:H7 colonies, which were confirmed by a multiplex PCR assay and characterized by pulsed-field gel electrophoresis (PFGE) typing. On day 0, E. coli O157:H7 was detected in 7.0% of feed bunk samples and 14.3% of pen floor samples but in none of the water trough samples. The 71.4% prevalence of E. coli O157:H7 in fecal samples on day 0 decreased significantly (P < 0.05) over time. E. coli O157:H7 fecal shedding was not associated with dietary treatment (P > 0.05); however, in cattle fed YC and YC × MON fecal shedding was 0% by day 28. Eight XbaI PFGE subtypes were identified, and a predominant subtype and three closely related subtypes (differing by three or fewer bands) accounted for 78.7% of environmental and fecal isolates characterized. Results from this study indicate that feeding YC to cattle may numerically decrease but not eliminate fecal shedding of E. coli O157:H7 at the onset of treatment and that certain E. coli O157 subtypes found in the feedlot environment may persist in feedlot cattle.


2008 ◽  
Vol 71 (3) ◽  
pp. 539-544 ◽  
Author(s):  
EBOT S. TABE ◽  
JAMES OLOYA ◽  
DAWN K. DOETKOTT ◽  
MARC L. BAUER ◽  
PENELOPE S. GIBBS ◽  
...  

The effect of direct-fed microbials (DFM) on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle was evaluated in a clinical trial involving 138 feedlot steers. Following standard laboratory methods, fecal samples collected from steers were evaluated for change in the detectable levels of E. coli O157:H7 and Salmonella shed in feces after DFM treatment. Sampling of steers was carried out every 3 weeks for 84 days. A significant reduction (32%) in fecal shedding of E. coli O157:H7 (P < 0.001), but not Salmonella (P = 0.24), was observed among the treatment steers compared with the control group during finishing. The probability of recovery of E. coli O157:H7 from the feces of treated and control steers was 34.0 and 66.0%, respectively. Steers placed on DFM supplement were almost three times less likely to shed E. coli O157:H7 (odds ratio, 0.36; 95% confidence interval, 0.25 to 0.53; P < 0.001) in their feces as opposed to their control counterparts. The probability of recovery of Salmonella from the feces of the control (14.0%) and the treated (11.3%) steers was similar. However, the DFM significantly reduced probability of new infections with Salmonella among DFM-treated cattle compared with controls (nontreated ones). It appears that DFM as applied in our study are capable of significantly reducing fecal shedding of E. coli O157:H7 in naturally infected cattle but not Salmonella. The factors responsible for the observed difference in the effects of DFM on E. coli O157:H7 and Salmonella warrants further investigation.


2009 ◽  
Vol 75 (5) ◽  
pp. 1271-1278 ◽  
Author(s):  
Y. D. Niu ◽  
T. A. McAllister ◽  
Y. Xu ◽  
R. P. Johnson ◽  
T. P. Stephens ◽  
...  

ABSTRACT The relationship between endemic bacteriophages infecting E. coli O157:H7 (referred to as “phage”) and levels of shedding of E. coli O157:H7 by cattle was investigated in two commercial feedlots in southern Alberta, Canada. Between May and November 2007, 10 pens of cattle were monitored by collection of pooled fecal pats, water with sediment from troughs, manure slurry from the pen floor, and rectal fecal samples from individual animals (20 per pen) at two separate times. Bacteriophages infecting E. coli O157:H7 were detected more frequently (P < 0.001) after 18 to 20 h enrichment than by initial screening and were recovered in 239 of 855 samples (26.5% of 411 pooled fecal pats, 23.8% of 320 fecal grab samples, 21.8% of 87 water trough samples, and 94.6% of 37 pen floor slurry samples). Overall, prevalence of phage was highest (P < 0.001) in slurry. Recovery of phage from pooled fecal pats was highest (P < 0.05) in May. Overall recovery did not differ (P > 0.10) between fecal grab samples and pooled fecal pats. A higher prevalence of phage in fecal pats or water trough samples was associated (P < 0.01) with reduced prevalence of E. coli O157:H7 in rectal fecal samples. There was a weak but significant negative correlation between isolation of phage and E. coli O157:H7 in fecal grab samples (r = −0.11; P < 0.05). These data demonstrate that the prevalence of phage fluctuates in a manner similar to that described for E. coli O157:H7. Phage were more prevalent in manure slurry than other environmental sources. The likelihood of fecal shedding of E. coli O157:H7 was reduced if cattle in the pen harbored phage.


2017 ◽  
Vol 80 (5) ◽  
pp. 848-856 ◽  
Author(s):  
Pragathi B. Shridhar ◽  
Lance W. Noll ◽  
Charley A. Cull ◽  
Xiaorong Shi ◽  
Natalia Cernicchiaro ◽  
...  

ABSTRACT Cattle are a major reservoir of the six major Shiga toxin–producing non-O157 Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) responsible for foodborne illnesses in humans. Besides prevalence in feces, the concentrations of STEC in cattle feces play a major role in their transmission dynamics. A subset of cattle, referred to as super shedders, shed E. coli O157 at high concentrations (≥4 log CFU/g of feces). It is not known whether a similar pattern of fecal shedding exists for non-O157. Our objectives were to initially validate the spiral plating method to quantify the six non-O157 E. coli serogroups with pure cultures and culture-spiked fecal samples and then determine the applicability of the method and compare it with multiplex quantitative PCR (mqPCR) assays for the quantification of the six non-O157 E. coli serogroups in cattle fecal samples collected from commercial feedlots. Quantification limits of the spiral plating method were 3 log, 3 to 4 log, and 3 to 5 log CFU/mL or CFU/g for individual cultures, pooled pure cultures, and cattle fecal samples spiked with pooled pure cultures, respectively. Of the 1,152 cattle fecal samples tested from eight commercial feedlots, 122 (10.6%) and 320 (27.8%) harbored concentrations ≥4 log CFU/g of one or more of the six serogroups of non-O157 by spiral plating and mqPCR methods, respectively. A majority of quantifiable samples, detected by either spiral plating (135 of 137, 98.5%) or mqPCR (239 of 320, 74.7%), were shedding only one serogroup. Only one of the quantifiable samples was positive for a serogroup carrying Shiga toxin (stx1) and intimin (eae) genes; 38 samples were positive for serogroups carrying the intimin gene. In conclusion, the spiral plating method can be used to quantify non-O157 serogroups in cattle feces, and our study identified a subset of cattle that was super shedders of non-O157 E. coli. The method has the advantage of quantifying non-O157 STEC, unlike mqPCR that quantifies serogroups only.


2010 ◽  
Vol 76 (21) ◽  
pp. 7238-7242 ◽  
Author(s):  
M. E. Jacob ◽  
Z. D. Paddock ◽  
D. G. Renter ◽  
K. F. Lechtenberg ◽  
T. G. Nagaraja

ABSTRACT Our objectives were to evaluate the prevalence of Escherichia coli O157:H7 in cattle fed diets supplemented with 20 or 40% dried distillers' grains (DG) (DDG) or wet DG (WDG) and assess whether removing DG from diets before slaughter affected fecal shedding of E. coli O157:H7. Eight hundred forty steers were allocated to 70 pens (12 steers/pen). Treatments were no DG (control), 20% DDG or WDG, and 40% DDG or WDG, and each was replicated in 14 pens. In phase 1, eight floor fecal samples were collected from each pen every 2 weeks for 12 weeks for isolation of E. coli O157:H7 and detection of high shedders. In phase 2, half of the pens with DG were transitioned to the no-DG control diet, and pen floor fecal samples were collected weekly from all pens for 4 weeks. During phase 1, prevalence of E. coli O157:H7 was 20.8% and 3.2% for high shedders. The form of DG had no significant effect on fecal E. coli O157:H7 shedding. The prevalence levels of E. coli O157:H7 and the numbers of high shedders were not different between diets with 0 or 20% DG; however, cattle fed 40% DG had a higher prevalence and more high shedders than cattle fed 0 or 20% DG (P ≤ 0.05). During phase 2, overall and high-shedder prevalence estimates were 3.3% and <0.1%, respectively, and there were no differences between those for different DG forms and inclusion levels or when DG was removed from diets. The form of DG had no impact on E. coli O157:H7; however, fecal shedding was associated with the DG inclusion level.


2013 ◽  
Vol 76 (9) ◽  
pp. 1626-1629 ◽  
Author(s):  
M. E. JACOB ◽  
D. M. FOSTER ◽  
A. T. ROGERS ◽  
C. C. BALCOMB ◽  
X. SHI ◽  
...  

Shiga toxin–producing Escherichia coli (STEC) are important human pathogens, and attention to non-O157 serogroups has increased in recent years. Although cattle are normally considered the primary reservoir for STEC, recent illnesses associated with goat contact have indicated that these animals are important potential reservoirs for the organisms. The prevalence of STEC, particularly non-O157 serogroups, in U.S. goats has not been well described. Our objective was to determine the prevalence of six major non-O157 STEC serogroups in the feces of meat goats. Rectal contents from 296 goats were collected postevisceration at a slaughter plant in the southeastern United States over 9 days during a 12-week period from August through October 2012. Samples were enriched in E. coli broth, and DNA was extracted and used as template in an 11-gene multiplex PCR that detected six non-O157 serogroups (O26, O45, O103, O121, O111, and O145) and virulence genes. Samples were considered positive when at least one non-O157 STEC serotype was present with either stx1 or stx2. All six non-O157 serogroups were detected by PCR in our samples, and 14.5% of samples were positive for at least one serogroup. Prevalence of O26 was highest, with 6.4% of goat fecal samples positive. The prevalence of O45 was 3.4%, O103 was 4.4%, O111 was 4.1%, O121 was 1.4%, and O145 was 3.0%. Twenty-two (7.4%) of 296 fecal samples had more than one non-O157 serogroup detected in the feces. Two samples had evidence of three non-O157 STEC serogroups. Goats appear to be an important reservoir for non-O157 STEC, and further work to understand the characteristics, epidemiology, and ecology of STEC in these animals is warranted.


2014 ◽  
Vol 77 (5) ◽  
pp. 722-731 ◽  
Author(s):  
PATRÍCIA BALTASAR ◽  
STEWART MILTON ◽  
WILLIAM SWECKER ◽  
FRANÇOIS ELVINGER ◽  
MONICA PONDER

Shiga toxin–producing Escherichia coli (STEC) strains are commonly found in cattle gastrointestinal tracts. In this study, prevalence and distribution of E. coli virulence genes (stx1, stx2, hlyA, and eaeA) were assessed in a cow-calf pasture-based production system. Angus cows (n = 90) and their calves (n = 90) were kept in three on-farm locations, and fecal samples were collected at three consecutive times (July, August, and September 2011). After enrichment of samples, stx1, stx2, eaeA, and hlyA were amplified and detected with a multiplex PCR (mPCR) assay. Fecal samples positive for stx genes were obtained from 93.3% (84 of 90) of dams and 95.6% (86 of 90) of calves at one or more sampling times. Age class (dam or calf), spatial distribution of cattle (farm locations B, H, K), and sampling time influenced prevalence and distribution of virulence genes in the herd. From 293 stx-positive fecal samples, 744 E. coli colonies were isolated. Virulence patterns of isolates were determined through mPCR assay: stx1 was present in 41.9% (312 of 744) of the isolates, stx2 in 6.5% (48 of 744), eaeA in 4.2% (31 of 744), and hlyA in 2.4% (18 of 744). Prevalence of non-O157 STEC was high among the isolates: 33.8% (112 of 331) were STEC O121, 3.6% (12 of 331) were STEC O103, and 1.8% (6 of 331) were STEC O113. One isolate (0.3%) was identified as STEC O157. Repetitive element sequence–based PCR (rep-PCR) fingerprinting was used to study genetic diversity of stx-positive E. coli isolates. Overall, rep-PCR fingerprints were highly similar, supporting the hypothesis that strains are transmitted between animals but not necessarily from a dam to its calf. Highly similar STEC isolates were obtained at each sampling time, but isolates obtained from dams were more diverse than those from calves, suggesting that strain differences in transference may exist. Understanding the transfer of E. coli from environmental and animal sources to calves may aid in developing intervention strategies to reduce E. coli colonization of young cattle.


2009 ◽  
Vol 72 (12) ◽  
pp. 2587-2591 ◽  
Author(s):  
TOM S. EDRINGTON ◽  
RUSSELL L. FARROW ◽  
GUY H. LONERAGAN ◽  
SAM E. IVES ◽  
MICHAEL J. ENGLER ◽  
...  

Ractopamine HCl and zilpaterol HCl, β-agonists recently approved for use in feedlot cattle to improve performance traits and carcass leanness, were examined for their effects on fecal shedding of Escherichia coli O157:H7 in feedlot cattle. Fecal samples (n = 2,454) were obtained from four experiments (one ractopamine HCl, three zilpaterol HCl) over the course of a 3-year period, either by rectal palpation (ractopamine HCl experiment) or from pen-floor fecal pats. Samples were cultured quantitatively and qualitatively for E. coli O157:H7. No significant treatment differences were detected for fecal prevalence of E. coli O157:H7 in the ractopamine HCl experiment. Zilpaterol HCl feeding had no effect (P &gt; 0.20) on fecal shedding in the first or second experiments, with overall E. coli O157:H7 prevalence relatively low (&lt;7%). In the third zilpaterol HCl experiment, the percentage of fecal samples that were E. coli O157:H7 positive following qualitative culture was higher (P &lt; 0.05) in the zilpaterol HCl treatment (10.3%) than for the control (6.1%). The current research showed minimal effects of β-agonists on fecal shedding of E. coli O157:H7 and indicated that these compounds (fed immediately prior to slaughter) are not a cause for concern from a food safety standpoint.


Sign in / Sign up

Export Citation Format

Share Document