410 Effect of relative dietary concentration of zinc amino acid complexes on growth performance and carcass characteristics of finishing beef steers - a nine study pooled analysis

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 166-166
Author(s):  
Christopher Reinhardt ◽  
Allison Millican ◽  
Tryon Wickersham ◽  
Connie Larson ◽  
Mark Branine

Abstract A nine-study retrospective pooled analysis was conducted to evaluate effects of relative dietary concentration of supplemental Zn provided as an amino acid complex (ZnAA) on growth, feed efficiency, carcass quality and yield in finishing beef steers. Data from nine well-controlled studies conducted at university and commercial feedlot research facilities in AB, IA, KS, OK and TX were evaluated using 249 pens ranging from 6 to 275 steers/pen (Total number=14,096 animals.; initial BW = 340± 6.2 kg). Dietary ZnAA concentrations were defined where; Level 0 = < 30 mg-1·kg-1; Level 1 =30 – 59 mg-1·kg-1; Level 2= 60 – 89 mg-1·kg-1; Level 3= > 90 mg-1·kg-1. Linear (L), quadratic (Q) and cubic (C) effects of dietary ZnAA level were evaluated with pen as the experimental unit and initial BW as a covariate. Carcass-adjusted growth parameters (ADG and Gain:Feed) and final BW indicated a Q response (P ≤ 0.10) with increasing dietary ZnAA concentration, whereas DM intake was not affected by ZnAA level. Hot carcass weight, dressing percentage and ribeye area quadratically increased (P ≤ 0.03) as dietary ZnAA concentration increased. Measures of relative carcass finish (backfat thickness and calculated YG) indicated a L increase (P ≤ 0.01) towards a greater degree of carcass fat as ZnAA increased. Additionally, a L increase in percentage of carcasses grading USDA Choice with increasing dietary ZnAA concentrations and conversely L reductions in percentages of carcasses in YG 1 and 2 categories; suggested dietary ZnAA concentration impacts carcass composition in finishing beef steers. Total and A+ liver abscess incidence was reduced (Q; P ≤ 0.01) with Level 2 having the lowest observed incidence. Results suggest a dietary concentration of 60 mg-1·kg-1 DM supplemental ZnAA results in optimal growth performance and carcass traits for finishing beef cattle.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 159-159
Author(s):  
Christopher Reinhardt ◽  
Allison Millican ◽  
Tryon Wickersham ◽  
Connie Larson ◽  
Mark Branine

Abstract A nine-study retrospective pooled analysis was conducted to evaluate supplemental Zn provided as an amino acid complex (ZnAA) on growth performance, carcass quality and yield in finishing beef steers fed with or without ractopamine hydrochloride (RAC) prior to slaughter. Data from nine well-controlled studies conducted at university and commercial feedlot research facilities in AB, IA, KS, OK and TX were evaluated using 249 pens ranging from 6 to 275 steers /pen (Total number=14,096 animals.; initial BW = 340± 6.2 kg). Treatments evaluated were: (1) Control (CON) =basal diet with 0 to 11 mg-1·kg-1 DM ZnAA and no RAC; (2) RAC = 200 to 320 mg RAC ∙hd-1∙d-1 fed 28 to 42 d prior to slaughter; (3) ZnAA only =30 to 120 mg-1·kg-1 DM fed throughout finishing period; (4) ZnAA + RAC. Main effects of feeding RAC, ZnAA and RAC × ZnAA interaction were determined for growth performance and carcass data with pen as experimental unit and initial BW as covariate. Combined analyses indicated no RAC × ZnAA interactions (P ≥ 0.23). RAC main effect improved carcass-adjusted growth performance and increased HCW and ribeye area (P ≤ 0.01). Main effect ZnAA increased carcass-adjusted final BW, ADG, and HCW (P ≤ 0.01); improved carcass-adjusted Gain: DM feed ratio (P = 0.06), dressing percentage (P = 0.02), and increased calculated yield grade, backfat thickness and percentage of carcass internal fat (P ≤ 0.10). A RAC × ZnAA interaction (P ≤ 0.10) was observed for USDA quality and yield grade distribution of carcasses. Incidence and severity of liver abscesses were reduced (P ≤ 0.05) by feeding either ZnAA or RAC. Feeding ZnAA and RAC to finishing cattle separately or in combination were additive for producing incremental improvements in production and carcass traits of economic importance.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 212-213
Author(s):  
Chanda Engel ◽  
Gary Tibbetts ◽  
Mark Branine

Abstract A 42-d research study evaluated effects of feeding beef steers increasing levels of dietary Zn from Zn methionine (AAC-Zn; ZINPRO, Zinpro Corporation, Eden Prairie, MN) with or without supplemental Cu from Cu amino acid complex (AAC-Cu; Availa Cu, Zinpro Corp.) concurrently with ractopamine hydrochloride (RAC; Optaflexx, Elanco Animal Health, Greenfield, IN). One hundred-twenty steers (mean BW = 624 kg), ≤ 50 d from projected harvest were randomized to three pens (40 steers/pen) equipped with GrowSafe Systems (Calgary AB, Canada) feed bunk technology. Each pen was assigned to one of three treatment diets: 1) basal finishing diet + 30 mg Zn/kg DM from AAC-Zn (CON); 2) basal finishing diet + 90 mg Zn/kg DM from AAC-Zn (AAC-Zn90); or 3) AAC-Zn90 diet + 10 mg Cu/kg DM from AAC-Cu (AAC-Zn/Cu). Following allocation to treatments, cattle were acclimated to pen cohorts and GrowSafe feed bunks for 7 days. All steers were fed 300 mg RAC∙hd-1∙d-1 starting 35 d prior to harvest. Individual feed intake measurements began with RAC feeding and continued for 35 d until cattle were shipped for harvest. Carcass data were collected from each steer. Data were analyzed with individual animal as the experimental unit using PROC MIXED and PROC GLIMMIX procedures of SAS 9.4 (SAS Institute, Cary, NC). Numerically AAC-Zn90 fed cattle had heavier carcass weights than CON and AAC-Zn/Cu. Steers fed AAC-Zn90 had greater (P = 0.02) marbling scores compared to AAC-Zn/Cu. Steers fed AAC-Zn90 had lower backfat thickness (P = 0.02) and numerically greater marbling scores compared to CON. A biphasic program of feeding a lower level of AAC-Zn for the duration of the finishing phase followed by an increased rate of AAC-Zn during RAC feeding may optimize overall live and carcass response and improve total individual animal value.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 157-158
Author(s):  
Jeff Heldt ◽  
Ben Holland ◽  
Alyssa Word ◽  
Kendall Karr

Abstract Crossbred beef steers (n = 2,420; 357 ± 16 kg BW) were used to evaluate the effects of supplemental trace mineral sources on the performance and carcass characteristics on feedlot cattle. Steers were housed in 20 pens (120–125 steers per pen) with 10 pens per treatment. Supplemental trace mineral treatments (100% DM) consisted of: control: 8.3 mg/kg of Cu (100% CuSO4), 83.4 mg/kg of Zn (64.1% ZnSO4/35.9% Zn amino acid complex), and 28.7 mg/kg of Mn (100% MnSO4); hydroxy: 8.3 mg/kg of Cu (100% basic Cu chloride), 82.9 mg/kg of Zn (100% Zn hydroxychloride), and 19.3 mg/kg of Mn (100% Mn hydroxychloride). Steers were fed trace mineral treatments for 158 d and harvested at a commercial abattoir. Data were analyzed as a randomized complete block design with pen as the experimental unit. There were no differences between treatments in DMI, ADG, feed:gain, final BW, or mortality (P ≥ 0.38); however, morbidity tended (P = 0.06) to be greater for hydroxy than control (3.44 or 2.20%, respectively). Hot carcass weight, dressing percentage, marbling score, and longissimus muscle area were unaffected (P ≥ 0.28) by treatment, though backfat tended (P = 0.07) to be greater for hydroxy compared to control (1.55 or 1.51 cm, respectively). Distributions of quality grades were not different (P ≥ 0.14) with the exception of increased (P = 0.01) Prime carcasses in control compared to hydroxy (2.57 or 1.18%, respectively). Distributions of yield grades 2, 3, and 4 were not different (P ≥ 0.17) between treatments, though percentage of carcasses assigned 1 was reduced (P = 0.01) and 5 was increased (P = 0.05) in hydroxy compared to control. These data indicate steers fed 100% hydroxychloride trace minerals perform similiarly to steers fed CuSO4, MnSO4, and a ZnSO4/Zn amino acid complex combination.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 152-153
Author(s):  
Aubree M Beenken ◽  
Erin L Deters ◽  
Colten W Dornbach ◽  
Stephanie L Hansen ◽  
Joshua C McCann ◽  
...  

Abstract Ninety-one early-weaned (65 ± 11 d) Angus steers (92 ± 4 kg) were blocked by age to a 2 × 2 factorial examining effects of injectable vitamin C (VC) at weaning and/or prior to transport to the feedlot on antibody titers and growth performance. Injections (20 mL/steer) of VC (250 mg sodium ascorbate/mL) or saline (SAL) were given at time of weaning on d 0 (WEAN) and/or prior to a 6 hr trucking event to a feedlot on d 49 (TRANS). Steers were given booster vaccinations on d 0. Steers were weighed on d 0, 1, 14, 48, 49, 64, 106, and 107. Blood was collected (12 steers/treatment) on d 0, 1, 2, 14, 49 (pre- and post-transit), 50, and 51. Data were analyzed via Proc-Mixed of SAS (experimental unit = steer; n = 22–23/treatment) with fixed effects of block, WEAN, TRANS, and WEAN × TRANS. Plasma ascorbate concentrations for weaning (d 0, 1, and 2) and transit (d 49-pre-trucking, 49-post-trucking, 50, and 51) were analyzed as repeated measures (repeated effect = day). Plasma ascorbate concentrations were greater on d 1 and 2 for steers that received VC at weaning (VC = 19.6, SAL = 8.8 ± 1.26 µM; WEAN × day P < 0.01). Similarly, ascorbate concentrations were greater on d 49 post-trucking, 50, and 51 for steers that received VC pre-transit (TRANS × day P = 0.01). Treatments did not affect bodyweight or average daily gain throughout the trial (P > 0.32). There were no effects of treatment on serum Bovine Viral Diarrhea Virus type 2 antibody titers on d 14 or 51 (P > 0.33). An injection of VC administered to early weaned beef steers at weaning or pre-transit increases plasma ascorbate concentrations but does not improve growth performance or antibody response to vaccination booster.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 82-83
Author(s):  
Pornpim Aparachita ◽  
Scott Carter ◽  
Afton Sawyer ◽  
Jared Harshman ◽  
Zach Rambo ◽  
...  

Abstract Previously, we reported that supplementing a water soluble zinc via drinking water (0 to 80 mg/L) to nursery pigs improved ADG and G:F. To evaluate the efficacy of higher titrated levels of this water soluble zinc amino acid complex (ProPath®Zn LQ, Zinpro Corporation, Eden Prairie, MN) on growth performance, 280 crossbred pigs (5.5 kg BW; 19 d of age) were randomly allotted to four water treatments (7 pens/treatment; 10 pigs/pen). The water treatments were 0, 40, 80 and 160 mg Zn/L of water. Pigs were fed in 4 dietary phases with complex, nutrient-dense, corn-soybean meal-based diets: Phase 1 and 2 (2,500 and 1,750 mg Zn as ZnO/kg; d 1–7 and 7–14, respectively) and Phase 3 and 4 (200 mg Cu as CuSO4/kg; d 14–23 and 23–42, respectively). Pigs and feeders were weighed weekly to determine ADG, ADFI, and G:F. Water meters were used to record and calculate water disappearance and zinc intake. Data were analyzed as a randomized complete block design. Orthogonal polynomial contrasts were used to determine linear and curvilinear effects. Water and total zinc intake increased linearly (P < 0.001) with increasing water zinc concentration. From d 0–14 when high dietary zinc was fed, there were no differences (P > 0.10) in ADG, ADFI, or G:F. However, from d 14–42 when basal levels of zinc were fed, quadratic improvements in ADG (0.545, 0.561, 0.578, 0.546 kg; P < 0.05) and G:F (0.686, 0.706, 0.723, 0.702; P < 0.01) were observed with increasing zinc via water. Similarly for d 0–42, ADG (0.435, 0.440, 0.454; 0.434 kg; P = 0.07), G:F (0.726, 0.740, 0.763, 0.749; P = 0.05) and average ending wt (23.73, 23.97, 24.55, 23.70 kg; P = 0.07) improved quadratically with increasing zinc. In conclusion, supplementing ProPath®Zn LQ via water resulted in improvements in ADG and G:F for nursery pigs.


2020 ◽  
Vol 4 (2) ◽  
pp. 848-853
Author(s):  
Dathan T Smerchek ◽  
Elizabeth M Buckhaus ◽  
Katie D Miller ◽  
Zachary K Smith

Abstract The influence of grass hay (GH) inclusion in replacement of corn silage in receiving diets on growth performance and dietary net energy (NE) utilization was evaluated in newly weaned beef steers (n = 162 Charolais-Red Angus cross steers; initial body weight [BW] = 278 ± 13.4 kg). Treatments were (DM basis): 1) 0% GH, 2) 10% GH, or 3) 20% GH inclusion in replacement of corn silage in receiving diets fed to newly weaned beef steers for 56 d. The study was conducted from October to December of 2019. Data were analyzed as randomized complete block design with pen serving as the experimental unit for all analyses. Increasing dietary inclusion of hay had no influence (P ≥ 0.11) on final BW, ADG, gain:feed or observed/expected dietary NEM and NEG, observed/expected dry matter intake (DMI), or observed/expected ADG. GH inclusion increased (linear effect, P = 0.01) DMI. Observed DMI for all treatments was approximately 15% to 17% less than anticipated based upon steer growth performance and tabular NE values. Evaluation of observed/expected ADG was 31% to 37% greater than expected for the steers in the present study. Particles less than 4 mm increased (linear effect, P = 0.01) and greater than 4 mm decreased (linear effect, P = 0.01) as GH replaced corn silage in the receiving diet. As the proportion of particles greater than 4 mm increased, cumulative ADG was decreased. These data indicate that GH should be considered in corn silage-based receiving diets to improve DMI. In high-risk calves, improved DMI could result in a lesser incidence of morbidity, although no morbidity was observed in any steers from the present study.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 141-142
Author(s):  
Dathan Smerchek ◽  
Zachary K Smith

Abstract Two-hundred and forty English × Continental beef steers (initial BW=365 kg [SD 22.5]) were used in a randomized complete block design to evaluate the effects of bedding application during a 36 d feedlot receiving phase on growth performance and efficiency during winter. Steers were allotted to 30 pens (n = 8 steers/pen) at the Ruminant Nutrition Center in Brookings, SD and pens were assigned to 1 of 2 treatments: 1) No bedding applied (NO) or 2) 1.8 kg (as-is basis) of wheat straw bedding/steer/d (BED). Due to the logistics of acquiring, weighing, and timely feeding of steers, the first 9 pen replicates began on test 14 d prior (begin: January 15, 2019 and end: February 20, 2019) to the last 6 pen replicates (begin: January 29, 2019 and end: March 6, 2019). Pen was the experimental unit; an α of 0.05 determined significance. Daily ambient temperature (n = 50) averaged -14.7°C [SD 5.63] and wind-chill (n = 50) averaged -17.7°C [SD 6.40]. Initial BW (365 vs. 365 ± 0.5 kg) and dry matter intake (8.19 vs. 8.22 ± 0.047 kg) did not differ (P ≥ 0.57) between NO and BED. End BW was greater for BED (P = 0.01; 419 vs. 402 ± 1.09 kg) compared to NO. Steers from BED had increased average daily gain (P = 0.01) by 48.0% and gain:feed (P = 0.01) by 49.2% over NO. Using tabular ingredient energy values and observed steer performance shrunk 4%, relative adjustments to metabolic rate were calculated. Estimated metabolic rate was elevated (P = 0.01) for NO (0.146 vs. 0.104 ± 0.0032 Mcal/BW0.75, kg). Bedding improves feedlot receiving phase growth and efficiency in eastern South Dakota during the winter. Under the environmental conditions of this experiment, steers have a 40.4% increased metabolic rate when bedding is not used and steers in bedded pens had a 35.1% increase in metabolic rate compared to (0.077 Mcal/BW0.75, kg).


1981 ◽  
Vol 33 (1) ◽  
pp. 87-97 ◽  
Author(s):  
A. J. Taylor ◽  
D. J. A. Cole ◽  
D. Lewis

ABSTRACTA basal diet containing 120 g crude protein per kg and 9g lysine per kg, and previously shown to be limiting in one or more essential amino acids and/or non-essential nitrogen, was examined. It was fed either alone to growing female pigs from 25 kg to 55 kg live weight or in combination with four supplements of synthetic amino acids each containing three out of isoleucine, methionine, threonine and tryptophan. A control diet containing 140 g crude protein per kg and 9g lysine per kg was also included. Blood samples were collected at 40 kg live weight in order to examine the influence of dietary treatments on blood metabolites. Results for growth performance, carcass composition and blood urea indicated that threonine was the first limiting amino acid in the basal diet. Plasma free amino acids gave no clear trend. Growth performance and carcass composition were unaffected by supplementation of the diet with glycine indicating that the dietary supply of non-essential nitrogen was adequate.


Sign in / Sign up

Export Citation Format

Share Document