scholarly journals 396 Effect of zinc amino acid complexes on growth performance and carcass characteristics of finishing beef steers fed with or without ractopamine hydrochloride- a nine study pooled analysis

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 159-159
Author(s):  
Christopher Reinhardt ◽  
Allison Millican ◽  
Tryon Wickersham ◽  
Connie Larson ◽  
Mark Branine

Abstract A nine-study retrospective pooled analysis was conducted to evaluate supplemental Zn provided as an amino acid complex (ZnAA) on growth performance, carcass quality and yield in finishing beef steers fed with or without ractopamine hydrochloride (RAC) prior to slaughter. Data from nine well-controlled studies conducted at university and commercial feedlot research facilities in AB, IA, KS, OK and TX were evaluated using 249 pens ranging from 6 to 275 steers /pen (Total number=14,096 animals.; initial BW = 340± 6.2 kg). Treatments evaluated were: (1) Control (CON) =basal diet with 0 to 11 mg-1·kg-1 DM ZnAA and no RAC; (2) RAC = 200 to 320 mg RAC ∙hd-1∙d-1 fed 28 to 42 d prior to slaughter; (3) ZnAA only =30 to 120 mg-1·kg-1 DM fed throughout finishing period; (4) ZnAA + RAC. Main effects of feeding RAC, ZnAA and RAC × ZnAA interaction were determined for growth performance and carcass data with pen as experimental unit and initial BW as covariate. Combined analyses indicated no RAC × ZnAA interactions (P ≥ 0.23). RAC main effect improved carcass-adjusted growth performance and increased HCW and ribeye area (P ≤ 0.01). Main effect ZnAA increased carcass-adjusted final BW, ADG, and HCW (P ≤ 0.01); improved carcass-adjusted Gain: DM feed ratio (P = 0.06), dressing percentage (P = 0.02), and increased calculated yield grade, backfat thickness and percentage of carcass internal fat (P ≤ 0.10). A RAC × ZnAA interaction (P ≤ 0.10) was observed for USDA quality and yield grade distribution of carcasses. Incidence and severity of liver abscesses were reduced (P ≤ 0.05) by feeding either ZnAA or RAC. Feeding ZnAA and RAC to finishing cattle separately or in combination were additive for producing incremental improvements in production and carcass traits of economic importance.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 166-166
Author(s):  
Christopher Reinhardt ◽  
Allison Millican ◽  
Tryon Wickersham ◽  
Connie Larson ◽  
Mark Branine

Abstract A nine-study retrospective pooled analysis was conducted to evaluate effects of relative dietary concentration of supplemental Zn provided as an amino acid complex (ZnAA) on growth, feed efficiency, carcass quality and yield in finishing beef steers. Data from nine well-controlled studies conducted at university and commercial feedlot research facilities in AB, IA, KS, OK and TX were evaluated using 249 pens ranging from 6 to 275 steers/pen (Total number=14,096 animals.; initial BW = 340± 6.2 kg). Dietary ZnAA concentrations were defined where; Level 0 = < 30 mg-1·kg-1; Level 1 =30 – 59 mg-1·kg-1; Level 2= 60 – 89 mg-1·kg-1; Level 3= > 90 mg-1·kg-1. Linear (L), quadratic (Q) and cubic (C) effects of dietary ZnAA level were evaluated with pen as the experimental unit and initial BW as a covariate. Carcass-adjusted growth parameters (ADG and Gain:Feed) and final BW indicated a Q response (P ≤ 0.10) with increasing dietary ZnAA concentration, whereas DM intake was not affected by ZnAA level. Hot carcass weight, dressing percentage and ribeye area quadratically increased (P ≤ 0.03) as dietary ZnAA concentration increased. Measures of relative carcass finish (backfat thickness and calculated YG) indicated a L increase (P ≤ 0.01) towards a greater degree of carcass fat as ZnAA increased. Additionally, a L increase in percentage of carcasses grading USDA Choice with increasing dietary ZnAA concentrations and conversely L reductions in percentages of carcasses in YG 1 and 2 categories; suggested dietary ZnAA concentration impacts carcass composition in finishing beef steers. Total and A+ liver abscess incidence was reduced (Q; P ≤ 0.01) with Level 2 having the lowest observed incidence. Results suggest a dietary concentration of 60 mg-1·kg-1 DM supplemental ZnAA results in optimal growth performance and carcass traits for finishing beef cattle.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 212-213
Author(s):  
Chanda Engel ◽  
Gary Tibbetts ◽  
Mark Branine

Abstract A 42-d research study evaluated effects of feeding beef steers increasing levels of dietary Zn from Zn methionine (AAC-Zn; ZINPRO, Zinpro Corporation, Eden Prairie, MN) with or without supplemental Cu from Cu amino acid complex (AAC-Cu; Availa Cu, Zinpro Corp.) concurrently with ractopamine hydrochloride (RAC; Optaflexx, Elanco Animal Health, Greenfield, IN). One hundred-twenty steers (mean BW = 624 kg), ≤ 50 d from projected harvest were randomized to three pens (40 steers/pen) equipped with GrowSafe Systems (Calgary AB, Canada) feed bunk technology. Each pen was assigned to one of three treatment diets: 1) basal finishing diet + 30 mg Zn/kg DM from AAC-Zn (CON); 2) basal finishing diet + 90 mg Zn/kg DM from AAC-Zn (AAC-Zn90); or 3) AAC-Zn90 diet + 10 mg Cu/kg DM from AAC-Cu (AAC-Zn/Cu). Following allocation to treatments, cattle were acclimated to pen cohorts and GrowSafe feed bunks for 7 days. All steers were fed 300 mg RAC∙hd-1∙d-1 starting 35 d prior to harvest. Individual feed intake measurements began with RAC feeding and continued for 35 d until cattle were shipped for harvest. Carcass data were collected from each steer. Data were analyzed with individual animal as the experimental unit using PROC MIXED and PROC GLIMMIX procedures of SAS 9.4 (SAS Institute, Cary, NC). Numerically AAC-Zn90 fed cattle had heavier carcass weights than CON and AAC-Zn/Cu. Steers fed AAC-Zn90 had greater (P = 0.02) marbling scores compared to AAC-Zn/Cu. Steers fed AAC-Zn90 had lower backfat thickness (P = 0.02) and numerically greater marbling scores compared to CON. A biphasic program of feeding a lower level of AAC-Zn for the duration of the finishing phase followed by an increased rate of AAC-Zn during RAC feeding may optimize overall live and carcass response and improve total individual animal value.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 157-158
Author(s):  
Jeff Heldt ◽  
Ben Holland ◽  
Alyssa Word ◽  
Kendall Karr

Abstract Crossbred beef steers (n = 2,420; 357 ± 16 kg BW) were used to evaluate the effects of supplemental trace mineral sources on the performance and carcass characteristics on feedlot cattle. Steers were housed in 20 pens (120–125 steers per pen) with 10 pens per treatment. Supplemental trace mineral treatments (100% DM) consisted of: control: 8.3 mg/kg of Cu (100% CuSO4), 83.4 mg/kg of Zn (64.1% ZnSO4/35.9% Zn amino acid complex), and 28.7 mg/kg of Mn (100% MnSO4); hydroxy: 8.3 mg/kg of Cu (100% basic Cu chloride), 82.9 mg/kg of Zn (100% Zn hydroxychloride), and 19.3 mg/kg of Mn (100% Mn hydroxychloride). Steers were fed trace mineral treatments for 158 d and harvested at a commercial abattoir. Data were analyzed as a randomized complete block design with pen as the experimental unit. There were no differences between treatments in DMI, ADG, feed:gain, final BW, or mortality (P ≥ 0.38); however, morbidity tended (P = 0.06) to be greater for hydroxy than control (3.44 or 2.20%, respectively). Hot carcass weight, dressing percentage, marbling score, and longissimus muscle area were unaffected (P ≥ 0.28) by treatment, though backfat tended (P = 0.07) to be greater for hydroxy compared to control (1.55 or 1.51 cm, respectively). Distributions of quality grades were not different (P ≥ 0.14) with the exception of increased (P = 0.01) Prime carcasses in control compared to hydroxy (2.57 or 1.18%, respectively). Distributions of yield grades 2, 3, and 4 were not different (P ≥ 0.17) between treatments, though percentage of carcasses assigned 1 was reduced (P = 0.01) and 5 was increased (P = 0.05) in hydroxy compared to control. These data indicate steers fed 100% hydroxychloride trace minerals perform similiarly to steers fed CuSO4, MnSO4, and a ZnSO4/Zn amino acid complex combination.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 152-153
Author(s):  
Aubree M Beenken ◽  
Erin L Deters ◽  
Colten W Dornbach ◽  
Stephanie L Hansen ◽  
Joshua C McCann ◽  
...  

Abstract Ninety-one early-weaned (65 ± 11 d) Angus steers (92 ± 4 kg) were blocked by age to a 2 × 2 factorial examining effects of injectable vitamin C (VC) at weaning and/or prior to transport to the feedlot on antibody titers and growth performance. Injections (20 mL/steer) of VC (250 mg sodium ascorbate/mL) or saline (SAL) were given at time of weaning on d 0 (WEAN) and/or prior to a 6 hr trucking event to a feedlot on d 49 (TRANS). Steers were given booster vaccinations on d 0. Steers were weighed on d 0, 1, 14, 48, 49, 64, 106, and 107. Blood was collected (12 steers/treatment) on d 0, 1, 2, 14, 49 (pre- and post-transit), 50, and 51. Data were analyzed via Proc-Mixed of SAS (experimental unit = steer; n = 22–23/treatment) with fixed effects of block, WEAN, TRANS, and WEAN × TRANS. Plasma ascorbate concentrations for weaning (d 0, 1, and 2) and transit (d 49-pre-trucking, 49-post-trucking, 50, and 51) were analyzed as repeated measures (repeated effect = day). Plasma ascorbate concentrations were greater on d 1 and 2 for steers that received VC at weaning (VC = 19.6, SAL = 8.8 ± 1.26 µM; WEAN × day P < 0.01). Similarly, ascorbate concentrations were greater on d 49 post-trucking, 50, and 51 for steers that received VC pre-transit (TRANS × day P = 0.01). Treatments did not affect bodyweight or average daily gain throughout the trial (P > 0.32). There were no effects of treatment on serum Bovine Viral Diarrhea Virus type 2 antibody titers on d 14 or 51 (P > 0.33). An injection of VC administered to early weaned beef steers at weaning or pre-transit increases plasma ascorbate concentrations but does not improve growth performance or antibody response to vaccination booster.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 90-90
Author(s):  
Kwangwook Kim ◽  
Yijie He ◽  
Cynthia Jinno ◽  
Seijoo Yang ◽  
Xunde Li ◽  
...  

Abstract The objective of this experiment was to investigate dietary supplementation of oligosaccharide-based polymer on growth performance, diarrhea, and fecal β-hemolytic coliforms of weaned pigs experimentally infected with a pathogenic F18 Escherichia coli (E. coli). Forty-eight pigs (7.23 ± 1.11 kg BW) were individually housed in disease containment rooms and randomly allotted to one of four treatments with 12 replicate pigs per treatment. The four dietary treatments were a nursery basal diet (control), and 3 additional diets supplemented with 50 mg/kg Mecadox (AGP), 10 or 20 mg/kg of oligosaccharide-based polymer. The experiment lasted 18 d [7 d before and 11 d after the first inoculation (d 0)]. The doses of F18 E. coli inoculum were 1010 cfu/3 mL oral dose daily for 3 days. Growth performance was measured on d -7 to 0 before inoculation, and d 0 to 5 and 5 to 11 post-inoculation (PI). Diarrhea score (DS; 1, normal, to 5, watery diarrhea) was daily recorded for each pig. Fecal samples were collected on d 2, 5, 8, and 11 PI to test the percentage of β-hemolytic coliforms in total coliforms. All data were analyzed by ANOVA using the PROC MIXED of SAS with pig as the experimental unit. Inclusion of oligosaccharide-based polymer linearly increased (P < 0.05) ADFI on d 0 to 5 PI, and feed efficiency on d 0 to 5 PI and d 5 to 11 PI (P = 0.07), compared with the control. Supplementation of AGP or oligosaccharide-based polymer reduced (P < 0.01) frequency of diarrhea of pigs from d 0 to 11 PI. No differences were observed in overall growth performance and percentage of fecal β-hemolytic coliforms on d 8 PI among pigs in AGP and oligosaccharide-based polymer treatments. In conclusion, supplementation of oligosaccharide-based polymer enhanced feed efficiency and reduced diarrhea of weaned pigs infected with a pathogenic E. coli.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 82-83
Author(s):  
Pornpim Aparachita ◽  
Scott Carter ◽  
Afton Sawyer ◽  
Jared Harshman ◽  
Zach Rambo ◽  
...  

Abstract Previously, we reported that supplementing a water soluble zinc via drinking water (0 to 80 mg/L) to nursery pigs improved ADG and G:F. To evaluate the efficacy of higher titrated levels of this water soluble zinc amino acid complex (ProPath®Zn LQ, Zinpro Corporation, Eden Prairie, MN) on growth performance, 280 crossbred pigs (5.5 kg BW; 19 d of age) were randomly allotted to four water treatments (7 pens/treatment; 10 pigs/pen). The water treatments were 0, 40, 80 and 160 mg Zn/L of water. Pigs were fed in 4 dietary phases with complex, nutrient-dense, corn-soybean meal-based diets: Phase 1 and 2 (2,500 and 1,750 mg Zn as ZnO/kg; d 1–7 and 7–14, respectively) and Phase 3 and 4 (200 mg Cu as CuSO4/kg; d 14–23 and 23–42, respectively). Pigs and feeders were weighed weekly to determine ADG, ADFI, and G:F. Water meters were used to record and calculate water disappearance and zinc intake. Data were analyzed as a randomized complete block design. Orthogonal polynomial contrasts were used to determine linear and curvilinear effects. Water and total zinc intake increased linearly (P < 0.001) with increasing water zinc concentration. From d 0–14 when high dietary zinc was fed, there were no differences (P > 0.10) in ADG, ADFI, or G:F. However, from d 14–42 when basal levels of zinc were fed, quadratic improvements in ADG (0.545, 0.561, 0.578, 0.546 kg; P < 0.05) and G:F (0.686, 0.706, 0.723, 0.702; P < 0.01) were observed with increasing zinc via water. Similarly for d 0–42, ADG (0.435, 0.440, 0.454; 0.434 kg; P = 0.07), G:F (0.726, 0.740, 0.763, 0.749; P = 0.05) and average ending wt (23.73, 23.97, 24.55, 23.70 kg; P = 0.07) improved quadratically with increasing zinc. In conclusion, supplementing ProPath®Zn LQ via water resulted in improvements in ADG and G:F for nursery pigs.


2019 ◽  
Vol 4 (1) ◽  
pp. 170-181 ◽  
Author(s):  
Jonathan C DeClerck ◽  
Loni W Lucherk ◽  
Nathan R Reeves ◽  
Mark F Miller ◽  
Bryan C Bernhard ◽  
...  

Abstract Thin, beef, cull cows [n = 144; initial body weight (BW) = 465.8 ± 56.9 kg, initial body condition score (BCS) = 2.13 ± 0.68] were serially slaughtered to evaluate the relationship between ractopamine hydrochloride (RH) administration and days on feed (DOF) on feedlot performance and carcass cutout value in a lean cow market. Cows were organized into a 3 × 2 factorial arrangement of treatments (48 pens, 8 pens per treatment, 3 cows per pen) and blocked by BW nested within pregnancy status. Treatment pens were top-dressed 400 mg per cow per day of RH (Actogain 45; Zoetis, Parsippany, NJ) for the final 28 d prior to slaughter to cows spending 28, 42, or 56 DOF. Pen served as the experimental unit, for all calculations. No RH × DOF interactions were detected (P ≥ 0.11), indicating that despite a majority of compensatory gain occurring during the first 28 d of the trial, the magnitude of the RH response was not affected by DOF. Compared to controls, RH incited improvements in feedlot performance, but had a greater extent on carcass weight gain and efficiency. Specifically, RH improved average daily gain (ADG) by 13.7% (P = 0.04) and carcass ADG by 16.9% (P = 0.02) Cattle fed RH displayed a 15.5% improved gain to feed ratio (P = 0.02) and a 20% improved carcass gain to feed ratio (P = 0.05). Inclusion of RH in the finishing diet increased hot carcass weight by 4.5% (P = 0.05; 12.9 kg). However, supplementation of RH did not alter red meat yield (P ≥ 0.16), but provoked a 11.1% improvement in lean maturity (P &lt; 0.01). Evaluation of the main effect of DOF provided insight into the compensatory state of beef cull cows on a high-concentrate diet. Serial slaughter offal weights presented confounding results. With additional DOF, a numerical increase in liver weights (P = 0.20) suggested that organ tissue replenishment occurred throughout the trial, and cattle experienced compensatory gain during the entire feeding phase. In contrast, lung and heart weights were not altered, while kidney tended to decrease linearly (P = 0.08) despite additional DOF. Furthermore, extending DOF generated a linear increase in dry matter intake (P &lt; 0.01) yet a tendency for a decline in ADG (P = 0.10), reinforcing the premise that most of compensatory gain occurred during the first 28 d of the trial. If thin (BCS ≤ 4), healthy candidates can be finished, feeders can reap the benefits of an additive relationship between compensatory gain and RH.


Sign in / Sign up

Export Citation Format

Share Document