Oral Fluid and Drug Impairment: Pairing Toxicology with Drug Recognition Expert Observations

2019 ◽  
Vol 43 (8) ◽  
pp. 637-643
Author(s):  
Michael T Truver ◽  
Kaitlyn B Palmquist ◽  
Madeleine J Swortwood

Abstract According to the Governors Highway Safety Association, drugs are detected more frequently in fatally injured drivers than alcohol. Due to the variety of drugs (prescribed and/or illicit) and their various physiological effects on the body, it is difficult for law enforcement to detect/prosecute drug impairment. While blood and urine are typical biological specimens used to test for drugs, oral fluid is an attractive alternative matrix. Drugs are incorporated into oral fluid by oral contamination (chewing or smoking) or from the bloodstream. Oral fluid is non-invasive and easy to collect without the need for a trained professional to obtain the sample, unlike urine or blood. This study analyzes paired oral fluid and urine with drug recognition expert (DRE) observations. Authentic oral fluid samples (n = 20) were collected via Quantisal™ devices from arrestees under an institutional review board-approved protocol. Urine samples (n = 18) were collected with EZ-SCREEN® cups that presumptively screened for Δ9-tetrahydrocannabinol (cannabinoids), opiates, methamphetamine, cocaine, methadone, phencyclidine, amphetamine, benzodiazepines and oxycodone. Impairment observations (n = 18) were recorded from officers undergoing DRE certification. Oral fluid samples were screened using an Agilent Technologies 1290 Infinity liquid chromatograph (LC) coupled to an Agilent Technologies 6530 Accurate Mass Time-of-Flight mass spectrometer (MS). Personal compound and database libraries were produced in-house containing 64 drugs of abuse. An Agilent 1290 Infinity LC system equipped with an Agilent 6470 Triple Quadrupole MS was used for quantification of buprenorphine, heroin markers (6-acetylmorphine, morphine) and synthetic opioids. Subjects were 23–54 years old; 11 (55%) were male and 9 (45%) were female. Evaluator opinion of drug class was confirmed in oral fluid 90% of time and in urine 85% of the time in reference to scope of testing by the LC–MS methods employed (excludes cannabis and central nervous system depressants). Data indicate that oral fluid may be a viable source for confirming driving under the influence of drugs.

2009 ◽  
Vol 31 (4) ◽  
pp. 511-519 ◽  
Author(s):  
Sarah M R Wille ◽  
Elke Raes ◽  
Pirjo Lillsunde ◽  
Teemu Gunnar ◽  
Marleen Laloup ◽  
...  

2009 ◽  
Vol 55 (11) ◽  
pp. 1910-1931 ◽  
Author(s):  
Wendy M Bosker ◽  
Marilyn A Huestis

Abstract Background: Oral fluid (OF) is an exciting alternative matrix for monitoring drugs of abuse in workplace, clinical toxicology, criminal justice, and driving under the influence of drugs (DUID) programs. During the last 5 years, scientific and technological advances in OF collection, point-of-collection testing devices, and screening and confirmation methods were achieved. Guidelines were proposed for workplace OF testing by the Substance Abuse and Mental Health Services Administration, DUID testing by the European Union’s Driving under the Influence of Drugs, Alcohol and Medicines (DRUID) program, and standardization of DUID research. Although OF testing is now commonplace in many monitoring programs, the greatest current limitation is the scarcity of controlled drug administration studies available to guide interpretation. Content: This review outlines OF testing advantages and limitations, and the progress in OF that has occurred during the last 5 years in collection, screening, confirmation, and interpretation of cannabinoids, opioids, amphetamines, cocaine, and benzodiazepines. We examine controlled drug administration studies, immunoassay and chromatographic methods, collection devices, point-of-collection testing device performance, and recent applications of OF testing. Summary: Substance Abuse and Mental Health Services Administration approval of OF testing was delayed because questions about drug OF disposition were not yet resolved, and collection device performance and testing assays required improvement. Here, we document the many advances achieved in the use of OF. Additional research is needed to identify new biomarkers, determine drug detection windows, characterize OF adulteration techniques, and evaluate analyte stability. Nevertheless, there is no doubt that OF offers multiple advantages as an alternative matrix for drug monitoring and has an important role in DUID, treatment, workplace, and criminal justice programs.


2010 ◽  
Vol 56 (6) ◽  
pp. 1007-1014 ◽  
Author(s):  
David M Schwope ◽  
Garry Milman ◽  
Marilyn A Huestis

Abstract Background: Oral fluid (OF) is gaining prominence as an alternative matrix for monitoring drugs of abuse in the workplace, criminal justice, and driving under the influence of drugs programs. It is important to characterize assay performance and limitations of screening techniques for Δ9-tetrahydrocannabinol (THC) in OF. Methods: We collected OF specimens by use of the Quantisal™ OF collection device from 13 daily cannabis users after controlled oral cannabinoid administration. All specimens were tested with the Immunalysis Sweat/OF THC Direct ELISA and confirmed by 2-dimensional GC-MS. Results: The limit of detection was <1 μg/L THC equivalent, and the assay demonstrated linearity from 1 to 50 μg/L, with semiquantification to 200 μg/L. Intraplate imprecision (n = 7) ranged from 2.9% to 7.7% CV, and interplate imprecision (n = 20) was 3.0%–9.1%. Cross-reactivities at 4 μg/L were as follows: 11-hydroxy-THC, 198%; Δ8-tetrahydrocannabinol (Δ8-THC), 128%; 11-nor-9-carboxy-THC (THCCOOH), 121%; THC (target), 98%; cannabinol, 87%; THCCOOH-glucuronide, 11%; THC-glucuronide, 10%; and cannabidiol, 2.4%. Of 499 tested OF specimens, 52 confirmed positive (THC 2.0–290 μg/L), with 100% diagnostic sensitivity at the proposed Substance Abuse and Mental Health Services Administration screening cutoff of 4 μg/L cannabinoids and GC-MS cutoff of 2 μg/L THC. Forty-seven specimens screened positive but were not confirmed by 2D-GC-MS, yielding 89.5% diagnostic specificity and 90.6% diagnostic efficiency. Thirty-one of 47 unconfirmed immunoassay positive specimens were from 1 individual and contained >400 ng/L THCCOOH, potentially contributing to cross-reactivity. Conclusions: The Immunalysis Sweat/OF THC Direct ELISA is an effective screening procedure for detecting cannabinoids in OF.


2009 ◽  
Vol 55 (11) ◽  
pp. 2004-2018 ◽  
Author(s):  
Nora Badawi ◽  
Kirsten Wiese Simonsen ◽  
Anni Steentoft ◽  
Inger Marie Bernhoft ◽  
Kristian Linnet

Abstract Background: The European DRUID (Driving under the Influence of Drugs, Alcohol And Medicines) project calls for analysis of oral fluid (OF) samples, collected randomly and anonymously at the roadside from drivers in Denmark throughout 2008–2009. To analyze these samples we developed an ultra performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) method for detection of 29 drugs and illicit compounds in OF. The drugs detected were opioids, amphetamines, cocaine, benzodiazepines, and Δ-9-tetrahydrocannabinol. Method: Solid-phase extraction was performed with a Gilson ASPEC XL4 system equipped with Bond Elut Certify sample cartridges. OF samples (200 mg) diluted with 5 mL of ammonium acetate/methanol (vol/vol 90:10) buffer were applied to the columns and eluted with 3 mL of acetonitrile with aqueous ammonium hydroxide. Target drugs were quantified by use of a Waters ACQUITY UPLC system coupled to a Waters Quattro Premier XE triple quadrupole (positive electrospray ionization mode, multiple reaction monitoring mode). Results: Extraction recoveries were 36%–114% for all analytes, including Δ-9-tetrahydrocannabinol and benzoylecgonine. The lower limit of quantification was 0.5 μg/kg for all analytes. Total imprecision (CV) was 5.9%–19.4%. With the use of deuterated internal standards for most compounds, the performance of the method was not influenced by matrix effects. A preliminary account of OF samples collected at the roadside showed the presence of amphetamine, cocaine, codeine, Δ-9-tetrahydrocannabinol, tramadol, and zopiclone. Conclusions: The UPLC-MS/MS method makes it possible to detect all 29 analytes in 1 chromatographic run (15 min), including Δ-9-tetrahydrocannabinol and benzoylecgonine, which previously have been difficult to incorporate into multicomponent methods.


2014 ◽  
Vol 28 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Nicholas Sigona ◽  
Karl G. Williams

Motor vehicle accidents due to prescription drug impairment have increased in the past decade. Typically, impairment is associated with medications causing excessive drowsiness, such as opioids or benzodiazepines, but the scope of driving under the influence (DUI)-drug charges is reaching into medications that are not typically considered impairing, such as antipsychotics, antiepileptics, and mood stabilizers. Data associating medication use with driving impairment are growing, especially with agents not typically thought of as impairing. Forty-three states currently train drug recognition experts who employ a 12-step evaluation to detect the presence of drug impairment. Seventeen states have instituted “per se” laws, which make it illegal to drive with the presence of drugs or metabolites in the body. Pharmacists should recognize an ethical, professional, and perhaps legal responsibility to inform patients of the risk of impaired driving with prescription agents. Pharmacists should reconsider how they are counseling patients on medication impairment and lower their threshold for warning a patient of potential impairment, expanding to agents typically not thought of as impairing. Pharmacists are in a position to ensure that patients fully understand the risk of impaired driving and the potential for DUI prosecution.


2011 ◽  
Vol 57 (8) ◽  
pp. 1127-1136 ◽  
Author(s):  
Dayong Lee ◽  
Garry Milman ◽  
Allan J Barnes ◽  
Robert S Goodwin ◽  
Jussi Hirvonen ◽  
...  

BACKGROUND Oral fluid (OF) is an accepted alternative biological matrix for drug treatment, workplace, and DUID (driving under the influence of drugs) investigations, but establishing the cannabinoid OF detection window and concentration cutoff criteria are important. METHODS Cannabinoid concentrations were quantified in OF from chronic, daily cannabis smokers during monitored abstinence. Δ9-tetrahydrocannabinol (THC)3, cannabidiol (CBD), cannabinol (CBN), and 11-nor-9-carboxy-THC (THCCOOH) were determined in daily OF samples collected with the Quantisal™ device. GC-MS limits of quantification (LOQ) were 0.5 μg/L for THC and CBD, 1 μg/L for CBN, and 7.5 ng/L for THCCOOH. RESULTS After providing written informed consent for this institutional review board–approved study, 28 participants resided from 4 to 33 days on the secure research unit and provided 577 OF specimens. At the LOQ, THC was generally quantifiable for 48 h, whereas CBD and CBN were detected only at admission. Median THCCOOH detection time was 13 days (CI 6.4–19.6 days). Mean THC detection rates decreased from 89.3% at admission to 17.9% after 48 h, whereas THCCOOH gradually decreased from 89.3% to 64.3% within 4 days. Criteria of THC ≥2 μg/L and THCCOOH ≥20 ng/L reduced detection to <48 h in chronic cannabis smokers. An OF THCCOOH/THC ratio ≤4 ng/μg or presence of CBD or CBN may indicate more recent smoking. CONCLUSIONS THC, THCCOOH, CBD, and CBN quantification in confirmatory OF cannabinoid testing is recommended. Inclusion of multiple cannabinoid cutoffs accounted for residual cannabinoid excretion in OF from chronic, daily cannabis smokers and could reduce the potential for positive test results from passive cannabis smoke exposure and lead to greatly improved test interpretation.


2012 ◽  
Vol 58 (10) ◽  
pp. 1418-1425 ◽  
Author(s):  
Nathalie A Desrosiers ◽  
Dayong Lee ◽  
David M Schwope ◽  
Garry Milman ◽  
Allan J Barnes ◽  
...  

Abstract BACKGROUND Oral fluid (OF) testing offers noninvasive sample collection for on-site drug testing; however, to date, test performance for Δ9-tetrahydrocannabinol (THC) detection has had unacceptable diagnostic sensitivity. On-site tests must accurately identify cannabis exposure because this drug accounts for the highest prevalence in workplace drug testing and driving under the influence of drugs (DUID) programs. METHODS Ten cannabis smokers (9 males, 1 female) provided written informed consent to participate in this institutional review board–approved study and smoked 1 6.8%-THC cigarette ad libitum. OF was collected with the Draeger DrugTest® 5000 test cassette and Quantisal™ device 0.5 h before and up to 22 h after smoking. Test cassettes were analyzed within 15 min (n = 66), and Quantisal GC-MS THC results obtained within 24 h. Final THC detection times and test performances were assessed at different cannabinoid cutoffs. RESULTS Diagnostic sensitivity, diagnostic specificity, and efficiency at DrugTest 5000's 5 μg/L screening cutoff and various THC confirmation cutoffs were 86.2–90.7, 75.0–77.8, and 84.8–87.9%, respectively. Last detection times were >22 h, longer than previously suggested. Confirmation of 11-nor-9-carboxy-THC, absent in THC smoke, minimized the potential for passive OF contamination and still provided 22-h windows of detection, appropriate for workplace drug testing, whereas confirmation of cannabidiol, and/or cannabinol yielded shorter 6-h windows of detection, appropriate for DUID OF testing. CONCLUSIONS The DrugTest 5000 on-site device provided high diagnostic sensitivity for detection of cannabinoid exposure, and the selection of OF confirmation analytes and cutoffs provided appropriate windows of detection to meet the goals of different drug testing programs.


Author(s):  
Ria Hayatun Nur ◽  
Indahwati A ◽  
Erfiani A

In this globalization era, health is the most important thing to be able to run various activities. Without good health, this will hinder many activities. Diabetes mellitus is one of the diseases caused by unhealty lifestyle.There are many treatments that can be done to prevent the occurrence of diabetes. The treatments are giving the insulin and also checking the glucose rate to the patients.Checking the glucose rate needs the tools which is safety to the body. This research want to develop non invasive tool which is safety and do not injure the patient. The purpose of this research is also finding the best model which derived from Linear, Quadratic, and Cubic Spline Regression. Some respondents were taking to get the glucose measuring by invasive and non invasive tools. It could be seen clearly that Spline Linear Regression was the best model than Quadratic and Cubic Spline Regression. It had 70% and 33.939 for R2 and RMSEP respectively.


Author(s):  
Magsumova O.A. ◽  
Postnikov M.A. ◽  
Ryskina E.A. ◽  
Tkach T.M. ◽  
Polkanova V.A.

One of the non-invasive methods for treating discoloration of hard tooth tissues is teeth whitening. The aim of this work is to assess the dynamics of changes in the acid resistance of enamel and hard tissues of teeth and the rate of its remineralization after the procedure of office teeth whitening. The study involved 123 patients aged 18 to 35 years with discoloration of various origins, with the color of hard tooth tissues on the Vita Classic A2 scale and darker. Before performing the office, teeth whitening procedure, all patients gave their written voluntary informed consent to participate in this study, as well as consent to the processing of personal data. Depending on the chosen method of office teeth whitening, patients were divided into 3 groups. The resistance of hard tooth tissues was judged based on the determination of TOER and CASRE tests. These indicators were determined at various times (5 days before the office teeth whitening procedure, 5 days after it, after 14, 30 days and 6 months). Regardless of the chosen whitening system, the office teeth whitening procedure is accompanied by a decrease in the enamel's resistance to acids and a decrease in the rate of its remineralization. The remineralizing function of oral fluid promotes the positive dynamics of the studied parameters after 14 days and after 30 days values increased due to the appointment of remineralizing therapy to all patients in 2 weeks after the teeth whitening procedure. After 6 months, all patients had high enamel resistance and the rate of its remineralization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter P. Ricci ◽  
Otto J. Gregory

AbstractThe presence of ammonia within the body has long been linked to complications stemming from the liver, kidneys, and stomach. These complications can be the result of serious conditions such as chronic kidney disease (CKD), peptic ulcers, and recently COVID-19. Limited liver and kidney function leads to increased blood urea nitrogen (BUN) within the body resulting in elevated levels of ammonia in the mouth, nose, and skin. Similarly, peptic ulcers, commonly from H. pylori, result in ammonia production from urea within the stomach. The presence of these biomarkers enables a potential screening protocol to be considered for frequent, non-invasive monitoring of these conditions. Unfortunately, detection of ammonia in these mediums is rather challenging due to relatively small concentrations and an abundance of interferents. Currently, there are no options available for non-invasive screening of these conditions continuously and in real-time. Here we demonstrate the selective detection of ammonia using a vapor phase thermodynamic sensing platform capable of being employed as part of a health screening protocol. The results show that our detection system has the remarkable ability to selectively detect trace levels of ammonia in the vapor phase using a single catalyst. Additionally, detection was demonstrated in the presence of interferents such as carbon dioxide (CO2) and acetone common in human breath. These results show that our thermodynamic sensors are well suited to selectively detect ammonia at levels that could potentially be useful for health screening applications.


Sign in / Sign up

Export Citation Format

Share Document