MicroRNA-448 targets SATB1 to reverse the cisplatin resistance in lung cancer via mediating Wnt/β-catenin signalling pathway

2020 ◽  
Vol 168 (1) ◽  
pp. 41-51
Author(s):  
Mei-Ying Ning ◽  
Zhao-Lin Cheng ◽  
Jing Zhao

Abstract This study aims to examine whether miR-448 reverses the cisplatin (DDP) resistance in lung cancer by modulating SATB1. QRT-PCR and immunohistochemistry were used to examine the miR-448 and SATB1 expressions in DDP-sensitive and -resistant lung cancer patients. A microarray was used to investigate the cytoplasmic/nucleic ratio (C/N ratios) of genes in A549 cells targeted by miR-448, followed by Dual-luciferase reporter gene assay. A549/DDP cells were transfected with miR-448 mimics/inhibitors with or without SATB1 siRNA followed by MTT assay, Edu staining, flow cytometry, qRT-PCR and western blotting. MiR-448 was lower but SATB1 was increased in DDP-resistant patients and A549/DDP cells. And the patients showed low miR-448 expression or SATB1 positive expression had poor prognosis. SATB1, as a target gene with higher C/N ratios (>1), was found negatively regulated by miR-448. Besides, miR-448 inhibitors increased resistance index of A549/DDP cells, promoted cell proliferation, increased cell distribution in S phrase, declined cell apoptosis and activated Wnt/β-catenin pathway. However, SATB1 siRNA could reverse the above effect caused by miR-448 inhibitors. MiR-448 targeting SATB1 to counteract the DDP resistance of lung cancer cells via Wnt/β-catenin pathway.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xinxin Kou ◽  
Hui Ding ◽  
Lei Li ◽  
Hongtu Chao

Purpose. Cisplatin is one of the most effective drugs for treating ovarian carcinoma (OC), which is among the most lethal types of carcinoma. However, the chemoresistance to cisplatin that develops over time leads to a poor clinical outcome for many OC patients. Therefore, it is necessary to clearly understand the molecular mechanisms of chemoresistance. In this study, we examined how Hsa-miR-105-1 functions in cisplatin-resistant OC cells. Methods. The levels of Hsa-miR-105-1 expression in cisplatin-sensitive and resistant OC cell lines were detected by qRT-PCR. The target gene of Hsa-miR-105-1 was predicted by using the TargetScan and Starbase databases and verified by the double luciferase reporter gene assay. The target gene of Hsa-miR-105-1 was identified as ANXA9, and ANXA9 expression was evaluated by qRT-PCR, western blotting, and immunofluorescence. To validate the function of Hsa-miR-105-1 in OC cells, we silenced or overexpressed Hsa-miR-105-1 in cisplatin-sensitive or resistant OC cell lines, respectively. Furthermore, the expression levels of several apoptosis-related proteins, including P53, P21, E2F1, Bcl-2, Bax, and caspase-3, were examined by western blot analysis. Results. The levels of Hsa-miR-105-1 expression were abnormally downregulated in cisplatin-resistant OC cells, while ANXA9 expression was significantly upregulated in those cells. Treatment with an Hsa-miR-105-1 inhibitor promoted the expression of ANXA9 mRNA and protein, enhanced the resistance to cisplatin, and attenuated the cell apoptosis induced by cisplatin in cisplatin-sensitive OC cells. Moreover, treatment with Hsa-miR-105-1 mimics inhibited ANXA9 expression, which further increased the levels of P53, P21, and Bax expression and decreased the levels of E2F1 and Bcl-2 expression, finally resulting in an increased sensitivity to cisplatin in cisplatin-resistant OC cells. Conclusion. We found that a downregulation of Hsa-miR-105-1 expression enhanced cisplatin-resistance, while an upregulation of Hsa-miR-105-1 restored the sensitivity of OC cells to cisplatin. The Hsa-miR-105-1/ANXA9 axis plays an important role in the cisplatin-resistance of OC cells.


2021 ◽  
Vol 20 (9) ◽  
pp. 1845-1853
Author(s):  
Qinfeng Han ◽  
Zhong Xu ◽  
Xiaolei Zhang ◽  
Kun Yang ◽  
Zhifei Sun ◽  
...  

Purpose: To investigate the effect of miR-486 on rats with acute myocardial infarction (AMI), and its mechanism of action.Methods: A rat model of AMI was established. They were randomly divided into 4 groups, namely, sham, model, agomiR-486 and antagomiR-486 groups, respectively. Rats in these different groups were treated with agomiR-21 (5 μL, 40 nmol/mL), antagomiR-21 (5 μL, 40 nmol/mL) or agomiR-NC (5 μL, 40 nmol/mL), respectively. Then, key miRNAs were sorted out using gene-chip assay and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. Luciferase reporter gene assay was conducted to determine the interaction between miR-486 and gene of PTEN. After intraperitoneal injection of agomiR-486 and antagomiR-486, hemodynamics was measured to determine the effect of miR-486 on myocardial function of the rats. The effect of miR-486 expression level on the expression of myocardial enzymes in serum, the morphology of myocardial tissues, and the apoptosis of myocardial tissues in rats, were investigated. Additionally, the effect of miR-486 expression level on PTEN/AKT signaling pathway in the rats was determined by Western blotting.Results: The results of gene-chip and qRT-PCR assays revealed that there were 8 differentially expressed genes in rat myocardial tissues in the model group when compared with the sham group. MiR-486 improved the cardiac function of rats and the morphology of myocardial tissues, but reduced AMI-induced apoptosis of myocardial cells and the expression of myocardial enzymes (markers of myocardial injury) in a dose-dependent manner (p < 0.05). The results of luciferase reporter gene assay showed that PTEN was a direct target of miR-486. In rat models of AMI, a raised expression of miR-486 remarkably suppressed the protein expression level of PTEN and up-regulated that of p-AKT/AKT (p < 0.05).Conclusion: MiR-486 protects against AMI in rats probably by targeting PTEN and activating the AKT signaling pathway. The results of the current study may provide new insights for the treatment of AMI.


2020 ◽  
Author(s):  
Juan Tong ◽  
Huilan Liu ◽  
Changcheng Zheng ◽  
Xiaoyu Zhu ◽  
Xiang Wan ◽  
...  

Abstract Background: Accumulating circular RNAs (circRNAs) are reported to be abnormally expressed in diverse cancers, hematologic malignancies included. This study aimed to investigate the biological function and underlying mechanisms of circ_0000005 in acute myeloid leukemia (AML).Materials and methods: Bone marrow samples were enrolled from AML patients with normal samples as controls. Circ_0000005, miR-139-5p and tetraspanin 3 (Tspan3) were detected by qRT-PCR and Western blot, respectively. AML cell lines (KG1 and HL60) were used as cell models. CCK-8, Transwell and flow cytometry assays were adopted to study the biological functions of circ_0000005 on AML cells in vitro. The interrelation between circ_0000005 and miR-139-5p was detected by bioinformatics, qRT-PCR, luciferase reporter gene assay, RNA pull-down assay, and RNA-binding protein immunoprecipitation (RIP) assays. Ultimately, Western blot, qRT-PCR, luciferase reporter gene assay were adopted to corroborate the interrelation between miR-139-5p and its target Tspan3. Results: Circ_0000005 was demonstrably elevated in both AML clinical samples and cell lines. Circ_0000005 overexpression promoted the viability, migration and invasion of AML cells, and repressed the apoptosis of AML cells, while silencing circ_0000005 showed opposite biological effects. Circ_0000005 interacted with miR-139-5p and repressed its expression, and Tspan3 was proved to be negatively regulated by miR-139-5p. Circ_0000005 could promote the expression of Tspan3 via repressing miR-139-5p, and the oncogenic functions of circ_0000005 were dependent on its regulatory function on miR-139-5p/Tspan3 axis.Conclusion: Circ_0000005 facilitates the malignant phenotypes of AML cells via miR-139-5p/Tspan3 axis. Circ_0000005 may serve as a potential therapeutic target in AML.


2020 ◽  
Author(s):  
Chunxia Yang ◽  
Dukai Chen ◽  
Xiaoling Zhong ◽  
Fangding Yang

Abstract Background Lung cancer (LC) remains a leading cause of cancer-related mortality worldwide. Long noncoding RNAs (lncRNAs) are crucial regulatory molecules in diverse pathological processes, including cancer progression. This study was conducted to probe the influence of lncRNA HAGLR on the growth, metastasis and stemness of LC cells. Methods Aberrantly expressed lncRNAs in LC tissues were screened out using microarray analysis. HAGLR expression in LC tissues and cells and in the paired normal ones was determined using RT-qPCR. Overexpression of HAGLR was administrated in H1299 and A549 cells to identify its function in the biological characteristics of LC cells. Sub-cellular localization of HAGLR was determined, and the downstream molecules involved in the HAGLR-mediated events were predicted on a bioinformation system and validated through dual luciferase reporter gene assay. Results HAGLR was poorly expressed in both LC tissues and cells. Overexpression of HAGLR inhibited viability, proliferation and metastasis, and reduced the stemness of H1299 and A549 cells. HAGLR up-regulated SLC34A2 expression through sponging miR-330-3p, leading to further inactivation of the Wnt/β-catenin signaling pathway. Artificial activation of the Wnt/β-catenin pathway recovered the viability and promoted metastasis of LC cells inhibited by HAGLR Conclusion HAGLR serves as a competing endogenous RNA for miR-330-3p to upregulate miR-330-3p expression and inactivate the Wnt/β-catenin pathway, leading to inhibited growth and metastasis and reduced stemness of LC cells.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Guo-Hua Zhou ◽  
Yi-Yu Lu ◽  
Jing-Lian Xie ◽  
Zi-Kun Gao ◽  
Xiao-Bo Wu ◽  
...  

Abstract Non-small cell lung cancer (NSCLC) is one of the most fatal types of cancer with significant mortality and morbidity worldwide. MicroRNAs (miRs) have been confirmed to have positive functions in NSCLC. In the present study, we try to explore the role of miR-758 in proliferation, migration, invasion, and apoptosis of NSCLC cells by regulating high-mobility group box (HMGB) 3 (HMGB3.) NSCLC and adjacent tissues were collected. Reverse transcription quantitative PCR (RT-qPCR) was employed to detect expression of miR-758 and HMGB3 in NSCLC and adjacent tissues, in BEAS-2B cells and NSCLC cell lines. The targetted relationship between miR-758 and HMGB3 was identified by dual luciferase reporter gene assay. The effects of miR-758 on proliferation, migration, invasion, cell cycle, and apoptosis of A549 cells. MiR-758 expression was lower in NSCLC tissues, which was opposite to HMGB3 expression. The results also demonstrated that miR-758 can target HMGB3. The cells transfected with miR-758 mimic had decreased HMGB3 expression, proliferation, migration, and invasion, with more arrested cells in G1 phase and increased apoptosis. Our results supported that the overexpression of miR-758 inhibits proliferation, migration, and invasion, and promotes apoptosis of NSCLC cells by negative regulating HMGB2. The present study may provide a novel target for NSCLC treatment.


2016 ◽  
Vol 5 (5) ◽  
pp. 1298-1305 ◽  
Author(s):  
Lili Xin ◽  
Jianshu Wang ◽  
Guoqiang Fan ◽  
Bizhong Che ◽  
Kaiming Cheng ◽  
...  

HSPA1A promoter-driven luciferase reporter gene assay provides a novel tool for predictive screening of the oxidative stress elicited by nanosilver.


2020 ◽  
Vol 40 (12) ◽  
Author(s):  
YunZhong Shi ◽  
DongMei Xi ◽  
XiaoNi Zhang ◽  
Zhen Huang ◽  
Na Tang ◽  
...  

Abstract Introduction: Multiple studies have suggested an association between cytomegalovirus (CMV) infection and essential hypertension (EH). MicroRNAs (miRNAs) play a critical role in the development of EH by regulating the expression of specific target genes. However, little is known about the role of miRNAs in CMV-induced EH. In the present study, we compared the miRNA expression profiles of samples from normal and murine cytomegalovirus (MCMV)-infected C57BL/6 mice using high-throughput sequencing analysis. Methods: We collected the thoracic aorta, heart tissues, and peripheral blood from 20 normal mice and 20 MCMV-infected mice. We identified differentially expressed miRNAs in the peripheral blood samples and predicted their target genes using bioinformatics tools. We then experimentally validated them using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the target genes with double luciferase reporter gene assay. Results: We found 118 differentially expressed miRNAs, among which 9 miRNAs were identified as potential MCMV infection-induced hypertension regulators. We then validated the expression of two candidate miRNAs, mmu-miR-1929-3p and mcmv-miR-m01-4-5p, using qRT-PCR. Furthermore, the dual-luciferase reporter gene assay revealed that the 3′-untranslated region (UTR) of endothelin A receptor (Ednra) messenger RNA (mRNA) contained a binding site for mmu-miR-1929-3p. Collectively, our data suggest that MCMV infection can raise the blood pressure and reduce mmu-miR-1929-3p expression in C57BL/6 mice. Moreover, we found that mmu-miR-1929-3p targets the 3′-UTR of the Ednra mRNA. Conclusion: This novel regulatory axis could aid the development of new approaches for the clinical prevention and control of EH.


Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 913-919
Author(s):  
Quan Liang ◽  
Qingjuan Yao ◽  
GuoYing Hu

AbstractObjectiveTo investigate the involvement of miR-520e in the modulation of cancer-promoting cyclinD1 in breast cancer.MethodsA reverse transcription-polymerase chain reaction (RT-PCR) was applied to test the regulation of miR-520e on cyclinD1. The binding of miR-520e to 3’-untranslated region (3’UTR) of cyclinD1 mRNA was predicted by an online bioinformatics website. The effect of miR-520e on the luciferase reporters with binding sites of miR-520e and 3’UTR of cyclinD1 mRNA was revealed using a luciferase reporter gene assay. The correlation between miR-520e and cyclinD1 in clinical breast cancer samples was detected through quantitative real-time PCR.ResultsThe expression of cyclinD1 was gradually reduced as the dose of miR-520e increased. Anti-miR-520e obviously induced cyclinD1 in breast cancer cells. After anti-miR-520e was introduced into the cells, the inhibition of cyclinD1 expression mediated by miR-520e was reversed. The binding of miR-520e with cyclinD1 was revealed via bioinformatics. Under the treatment of dose-increasing miR-520e or anti-miR-520e, the luciferase activities of cyclinD1 3’UTR vector were lower or higher by degrees. However, the activity of the mutant vector was not affected at all. Finally, in clinical breast cancer tissues the negative correlation of miR-520e with cyclinD1 was revealed.ConclusionIn conclusion, cyclinD1 is a new target of miR-520e in breast cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mingxin Zhang ◽  
Minghua Bai ◽  
Li Wang ◽  
Ning Lu ◽  
Jia Wang ◽  
...  

Abstract Background Platinum-based chemotherapy is a mainstay for treating esophageal cancer patients. In this manuscript, we have provided clues for influence of platinum on overall m6A level and further investigated the potential regulatory mechanism. Methods qRT-PCR was used to measure SNHG3 and miR-186-5p expression; ELISA and western blot were used to measure the expression of METTL3. CCK8 was used to measure the cell proliferation rate. Caspase 3/7 activity was used to measure the apoptosis rate. Dual luciferase reporter gene assay and RNA pull down assay were used to investigate the potential crosstalk between miR-186-5p and SNHG3; and miR-186-5p and METTL3. Results m6A level was increased when treated with platinum (CDDP, CPB and L-OHP). Besides, SNHG3 expression was induced and miR-186-5p expression was suppressed by platinum. Furthermore, SNHG3 could promote the m6A level, however miR-186-5p inhibited the m6A level through targeting METTL3. SNHG3 interacts with miR-186-5p to negatively regulate the expression of miR-186-5p; and miR-186-5p might bind to the 3′UTR of METTL3 to regulate its expression. Conclusion Platinum can increase the overall m6A level of esophageal cancer. SNHG3/miR-186-5p, induced by platinum, was involved in regulating m6A level by targeting METTL3. Our manuscript has provided clues that regulating m6A level might be a novel way to enhance the platinum efficacy.


2016 ◽  
Vol 40 (6) ◽  
pp. 1646-1655 ◽  
Author(s):  
Hao Lei ◽  
Hongxing Li ◽  
Hua Xie ◽  
Chunxia Du ◽  
Yankai Xia ◽  
...  

Background/Aims: Hirschsprung's disease (HSCR), known as aganglionosis, is an infrequent congenital gut motility disorder characterized by absence of enteric neurons. In this study, we focus on the role of the intronic miR-215 and its host gene isoleucyl-tRNA synthetase 2 (IARS2) in the pathogenesis of HSCR. Methods: Quantitative real time PCR and Western blot were used to detect the miRNA, mRNAs, and proteins levels. The dual-luciferase reporter gene assay confirmed the direct regulation of the specific mRNA and miRNAs in cell lines. Transwell assays, CCK8 assay, and flow cytometry were used to measure cell function of the human 293T and SH-SY5Y cells. Results: Expression levels of miR-215 in HSCR patient colon tissues were outstandingly lower than controls, which was positively correlated with expression of the host gene IARS2 and negatively correlated with predicted target gene: sialic acid binding Ig-like lectin 8 (SIGLEC-8). The loss of miR-215 inhibited cell migration and proliferation, which was consistent with the reduction of IARS2. The dual-luciferase reporter gene assay confirmed that miR-215 resulted in the inhibition of SIGLEC-8 by directly binding to the 3'-UTR of SIGLEC-8. Moreover, knocking-down SIGLEC-8 rescued the extent of suppressed cell migration and proliferation that resulted from the diminishment of miR-215. Conclusions: Our findings indicate that miR-215 acts in concert with the host gene IARS2 to affect neuron migration and proliferation through the target gene SIGLEC-8. We infer that the IARS2-miR-215-SIGLEC-8 pathway may play a crucial role in the pathogenesis of HSCR.


Sign in / Sign up

Export Citation Format

Share Document