Preparation of single-chain Fv antibodies in the cytoplasm of Escherichia coli by simplified and systematic chaperone optimization

2019 ◽  
Vol 166 (6) ◽  
pp. 455-462 ◽  
Author(s):  
Chenjiang Liu ◽  
Yoshihiro Kobashigawa ◽  
Soichiro Yamauchi ◽  
Yuya Toyota ◽  
Manaka Teramoto ◽  
...  

Abstract A single-chain variable fragment (scFv) antibody is a recombinant protein in which a peptide linker connects the variable regions of the heavy chain and light chain. Due to its smaller molecular size, an scFv can be expressed using Escherichia coli. The presence of two disulphide bonds in the molecule often prevents expression of correctly folded scFv in the E. coli cytoplasm, making a refolding process necessary to regenerate scFv activity. The refolding process is time-consuming and requires large amounts of expensive reagents, such as guanidine hydrochloride, l-arginine and glutathione. Here, to conveniently obtain scFv proteins, we devised a simple and systematic method to optimize the co-expression of chaperone proteins and to combine them with specially engineered E. coli strains that permit the formation of stable disulphide bonds within the cytoplasm. Several scFv proteins were successfully obtained in a soluble form from E. coli cytoplasm. Thermal denaturation experiments and/or surface plasmon resonance measurements revealed that the thus-obtained scFvs possessed a stable tertiary structure and antigen-binding activity. The combined use of engineered E. coli with the simplified and systematic chaperone optimization can be useful for the production of scFv proteins.

2000 ◽  
Vol 66 (11) ◽  
pp. 5024-5029 ◽  
Author(s):  
Luis A. Fernández ◽  
Isabel Sola ◽  
Luis Enjuanes ◽  
Víctor de Lorenzo

ABSTRACT A simple method for the nontoxic, specific, and efficient secretion of active single-chain Fv antibodies (scFvs) into the supernatants ofEscherichia coli cultures is reported. The method is based on the well-characterized hemolysin transport system (Hly) of E. coli that specifically secretes the target protein from the bacterial cytoplasm into the extracellular medium without a periplasmic intermediate. The culture media that accumulate these Hly-secreted scFv's can be used in a variety of immunoassays without purification. In addition, these culture supernatants are stable over long periods of time and can be handled basically as immune sera.


2003 ◽  
Vol 77 (24) ◽  
pp. 13396-13398 ◽  
Author(s):  
Esteban Veiga ◽  
Víctor de Lorenzo ◽  
Luis Angel Fernández

ABSTRACT We report here that fusions of single-chain antibodies (scFvs) to the autotransporter β domain of the IgA protease of Neisseria gonorrhoeae are instrumental in locating virus-neutralizing activity on the cell surface of Escherichia coli. E. coli cells displaying scFvs against the transmissible gastroenteritis coronavirus on their surface blocked in vivo the access of the infectious agent to cultured epithelial cells. This result raises prospects for antiviral strategies aimed at hindering the entry into target cells by bacteria that naturally colonize the same intestinal niches.


2018 ◽  
Vol 40 (4) ◽  
Author(s):  
Dang Thi Ngoc Ha ◽  
Le Thi Thu Hong ◽  
Truong Nam Hai

Single chain variable fragments (scFv) have widely been used in research, diagnosis and treatment, but the scFv is considered as difficult protein for expression in E. coli. In previous studies, we expressed a construction of recombinant single chain variable fragments again antigen specific for blood type A (antiA-scFv) individually or fused with Trx or SUMO. However, soluble fraction was low abandant and only approximately 40% when fused with Trx, the other cases were expressed in form of inclusion body. Therefore, it was difficult for purification, refolding and activity assesment. In thispaper, we demonstrated a suitable construction for soluble production of antiA-scFv fused with SUMO (SM/antiA-scFv) in presence of chaparones. Under fermentation with 0.1 mM IPTG at 20oC, the SM/antiA-scFv was entirely expressed in soluble form. Importantly, after cleavage from SUMO with SUMOprotease, antiA-scFv was still maintained in the supernatant fraction. Therefore, it can help ensure bioactivity and is useful for purification process. To the best of our knowledge, this is the first report showing soluble recombinant scFv fused with SUMO in presence of chaperone for determination of blood group antigens. Thus, this result facilitates the optimal study of soluble expression, purification and bioactivity determination of the antiA-scFv recombinant antibody. 


1998 ◽  
Vol 64 (12) ◽  
pp. 4862-4869 ◽  
Author(s):  
Jörg F. Rippmann ◽  
Michaela Klein ◽  
Christian Hoischen ◽  
Bodo Brocks ◽  
Wolfgang J. Rettig ◽  
...  

ABSTRACT Recently it has been demonstrated that L-form cells ofProteus mirabilis (L VI), which lack a periplasmic compartment, can be efficiently used in the production and secretion of heterologous proteins. In search of novel expression systems for recombinant antibodies, we compared levels of single-chain variable-fragment (scFv) production in Escherichia coliJM109 and P. mirabilis L VI, which express four distinct scFvs of potential clinical interest that show differences in levels of expression and in their tendencies to form aggregates upon periplasmic expression. Production of all analyzed scFvs in E. coli was limited by the severe toxic effect of the heterologous product as indicated by inhibition of culture growth and the formation of insoluble aggregates in the periplasmic space, limiting the yield of active product. In contrast, the L-form cells exhibited nearly unlimited growth under the tested production conditions for all scFvs examined. Moreover, expression experiments with P. mirabilis L VI led to scFv concentrations in the range of 40 to 200 mg per liter of culture medium (corresponding to volume yields 33- to 160-fold higher than those with E. coli JM109), depending on the expressed antibody. In a translocation inhibition experiment the secretion of the scFv constructs was shown to be an active transport coupled to the signal cleavage. We suppose that this direct release of the newly synthesized product into a large volume of the growth medium favors folding into the native active structure. The limited aggregation of scFv observed in the P. mirabilis L VI supernatant (occurring in a first-order-kinetics manner) was found to be due to intrinsic features of the scFv and not related to the expression process of the host cells. The P. mirabilis L VI supernatant was found to be advantageous for scFv purification. A two-step chromatography procedure led to homogeneous scFv with high antigen binding activity as revealed from binding experiments with eukaryotic cells.


2021 ◽  
Vol 22 (15) ◽  
pp. 7843
Author(s):  
Sang-Oh Ahn ◽  
Ho-Dong Lim ◽  
Sung-Hwan You ◽  
Dae-Eun Cheong ◽  
Geun-Joong Kim

Hydrophobins are small proteins (<20 kDa) with an amphipathic tertiary structure that are secreted by various filamentous fungi. Their amphipathic properties provide surfactant-like activity, leading to the formation of robust amphipathic layers at hydrophilic–hydrophobic interfaces, which make them useful for a wide variety of industrial fields spanning protein immobilization to surface functionalization. However, the industrial use of recombinant hydrophobins has been hampered due to low yield from inclusion bodies owing to the complicated process, including an auxiliary refolding step. Herein, we report the soluble expression of a recombinant class I hydrophobin DewA originating from Aspergillus nidulans, and its efficient purification from recombinant Escherichia coli. Soluble expression of the recombinant hydrophobin DewA was achieved by a tagging strategy using a systematically designed expression tag (ramp tag) that was fused to the N-terminus of DewA lacking the innate signal sequence. Highly expressed recombinant hydrophobin DewA in a soluble form was efficiently purified by a modified aqueous two-phase separation technique using isopropyl alcohol. Our approach for expression and purification of the recombinant hydrophobin DewA in E. coli shed light on the industrial production of hydrophobins from prokaryotic hosts.


Author(s):  
Fatemeh Sadat Javadian ◽  
Majid Basafa ◽  
Aidin Behravan ◽  
Atieh Hashemi

Abstract Background Overexpression of the EpCAM (epithelial cell adhesion molecule) in malignancies makes it an attractive target for passive immunotherapy in a wide range of carcinomas. In comparison with full-length antibodies, due to the small size, the scFvs (single-chain variable fragments) are more suitable for recombinant expression in E. coli (Escherichia coli). However, the proteins expressed in large amounts in E. coli tend to form inclusion bodies that need to be refolded which may result in poor recovery of bioactive proteins. Various engineered strains were shown to be able to alleviate the insolubility problem. Here, we studied the impact of four E. coli strains on the soluble level of anti-EpEX-scFv (anti-EpCAM extracellular domain-scFv) protein. Results Although results showed that the amount of soluble anti-EpEX-scFv obtained in BL21TM (DE3) (114.22 ± 3.47 mg/L) was significantly higher to those produced in the same condition in E. coli RosettaTM (DE3) (71.39 ± 0.31 mg/L), and OrigamiTM T7 (58.99 ± 0.44 mg/L) strains, it was not significantly different from that produced by E. coli SHuffleTM T7 (108.87 ± 2.71 mg/L). Furthermore, the highest volumetric productivity of protein reached 318.29 ± 26.38 mg/L in BL21TM (DE3). Conclusions Although BL21TM (DE3) can be a suitable strain for high-level production of anti-EpEX-scFv protein, due to higher solubility yield (about 55%), E. coli SHuffleTM T7 seems to be better candidate for soluble production of scfv compared to BL21TM (DE3) (solubility yield of about 30%).


2021 ◽  
Vol 12 (1) ◽  
pp. 123-137
Author(s):  
Carolina Sabença ◽  
Gilberto Igrejas ◽  
Patrícia Poeta ◽  
Frédéric Robin ◽  
Richard Bonnet ◽  
...  

Objectives. Epidemiological data concerning third-generation cephalosporin (3GC) resistance in wild fauna are scarce. The aim of this study was to characterize the resistance genes, their genetic context, and clonal relatedness in 17 Escherichia coli resistant to 3GC isolated from wild animals. Methods. The isolates were characterized by short-read whole genome sequencing, and long-read sequencing was used for the hybrid assembly of plasmid sequences. Results. The 3GC resistance gene most identified in the isolates was the extended-spectrum β-lactamases (ESBL)-encoding gene blaCTX-M-1 (82.3%), followed by blaCTX-M-32 (5.9%), blaCTX-M-14 (5.9%), and blaSHV-12 (5.9%). E. coli isolates mainly belonged to the sequence types (STs) rarely reported from humans. The single nucleotide polymorphism (SNP)-based typing showed that most E. coli genomes from wild animals (wild boars, birds of prey, and buzzards) formed clonal clusters (<5 SNPs), showing a clonal dissemination crossing species boundaries. blaCTX-M-1-harboring IncI1-ST3 plasmid was the predominant ESBL-encoding plasmid (76.4%) in wild animal isolates. Plasmid comparison revealed a 110-kb self-transferable plasmid consisting of a conserved backbone and two variable regions involved in antimicrobial resistance and in interaction with recipient cells during conjugation. Conclusion. Our results highlighted the unexpected clonal dissemination of blaCTX-M-1-encoding clones and the complicity of IncI1-ST3 plasmid in the spread of blaCTX-M-1 within wild fauna.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Young Su Kim ◽  
Hye-Jeong Lee ◽  
Man-ho Han ◽  
Nam-kyung Yoon ◽  
Yeu-chun Kim ◽  
...  

Abstract Background Growth factors (GFs) are signaling proteins that affect cellular processes such as growth, proliferation, and differentiation. GFs are used as cosmeceuticals, exerting anti-wrinkle, anti-aging, and whitening effects, and also as pharmaceuticals to treat wounds, growth failure, and oral mucositis. However, in mammalian and bacterial cells, low productivity and expression in inclusion bodies, respectively, of GFs does not satisfy the consumer demand. Here, we aimed to develop a bacterial expression system that produces high yields of soluble GFs that can be purified in their native forms. Results We present Fh8, an 8-kDa peptide from Fasciola hepatica with an N-terminal hexa-histidine (6HFh8), as a fusion partner for enhanced human GF production in recombinant Escherichia coli. The fusion partner harboring a tobacco etch virus (TEV) protease cleavage site was fused to the N-terminus of 10 human GFs: acidic and basic fibroblast growth factors (aFGF and bFGF, respectively), epidermal growth factor (EGF), human growth hormone (hGH), insulin-like growth factor 1 (IGF-1), vascular endothelial growth factor 165 (VEGF165), keratinocyte growth factor 1 (KGF-1), placental growth factor (PGF), stem cell factor (SCF), and tissue inhibitor of metalloproteinase 1 (TIMP-1). The fusion proteins were expressed in E. coli under the control of T7 promoter at three temperatures (25 °C, 30 °C, and 37 °C). All individual fusion proteins, except for SCF and TIMP-1, were successfully overexpressed in cytoplasmic soluble form at more than one temperature. Further, the original aFGF, IGF-1, EGF, and VEGF165 proteins were cleaved from the fusion partner by TEV protease. Five-liter fed-batch fermentation approaches for the 6HFh8-aFGF (lacking disulfide bonds) and 6HFh8-VEGF165 (a cysteine-rich protein) were devised to obtain the target protein at concentrations of 9.7 g/l and 3.4 g/l, respectively. The two GFs were successfully highly purified (> 99% purity). Furthermore, they exerted similar cell proliferative effects as those of their commercial equivalents. Conclusions We demonstrated that 6HFh8-GF fusion proteins could be overexpressed on a g/l scale in the cytoplasm of E. coli, with the GFs subsequently highly purified and maintaining their biological activity. Hence, the small protein 6HFh8 can be used for efficient mass-production of various GFs.


1996 ◽  
Vol 8 (4) ◽  
pp. 460-463 ◽  
Author(s):  
Mark A. Franklin ◽  
David H. Francis ◽  
Diane Baker ◽  
Alan G. Mathew

The objective of this study was to develop a polymerase chain reaction (PCR)-based method to detect and differentiate among Escherichia coli strains containing genes for the expression of 3 antigenic variants of the fimbrial adhesin K88 (K88ab, K88ac, and K88ad). Five primers were designed that allowed detection of K88+ E. coli, regardless of antigenic variant, and the separate detection of the ab, ac, and ad variants. Primers AM005 and AM006 are 21 base pair (bp) oligomers that correspond to a region of the K88 operon that is common to all 3 antigenic variants. Primers MF007, MF008, and MF009 are 24-bp oligomers that matched variable regions specific to ab, ac, and ad, respectively. Using primers AM005 and AM006, a PCR product was obtained that corresponds to a 764-bp region within the large structural subunit of the K88 operon common to all 3 antigenic variants. Primer AM005 used with MF007, MF008, or MF009 produced PCR products approximately 500-bp in length from within the large structural subunit of the K88 operon of the 3 respective antigenic variants. Fragments were identified by rates of migration on a 1% agarose gel relative to each other as well as to BstEII-digested lambda fragments. This PCR-based method was comparable to the enzyme-linked immunosorbent assay and western blot test in the ability to differentiate between the antigenic variants. K88+ E. coli were differentiated from among laboratory strains and detected in ileal samples taken from cannulated pigs challenged with a known K88+ variant. K88+ E. coli were also detected from fecal swabs taken from newly weaned pigs, thus confirming that this PCR-based test could provide a convenient clinical assay for the detection of K88+ E. coli. Detection and differentiation of K88+ E. coli using general and specific primers was successful. PCR methods of detection should permit identification of K88+ antigenic variants regardless of the level of expression of the antigen.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Hussin A. Rothan ◽  
Ammar Y. Abdulrahman ◽  
Pottayil G. Sasikumer ◽  
Shatrah Othman ◽  
Noorsaadah Abd Rahman ◽  
...  

Dengue diseases have an economic as well as social burden worldwide. In this study, the antiviral activity of protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR) peptide towards dengue NS2B-NS3pro and viral replication in Rhesus monkey kidney (MK2) cells was investigated. The peptide PG-1 was synthesized by solid-phase peptide synthesis, and disulphide bonds formation followed by peptide purification was confirmed by LC-MS and RPHPLC. Dengue NS2B-NS3pro was produced as a single-chain recombinant protein inE. coli. The NS2B-NS3pro assay was carried out by measuring the florescence emission of catalyzed substrate. Real-time PCR was used to evaluate the inhibition potential of PG-1 towards dengue serotype-2 (DENV-2) replication in MK2 cells. The results showed that PG-1 inhibited dengue NS2B-NS3pro at IC50of 11.7 μM. The graded concentrations of PG-1 at nontoxic range were able to reduce viral replication significantly (P<0.001) at 24, 48, and 72 hrs after viral infection. However, the percentage of inhibition was significantly (P<0.01) higher at 24 hrs compared to 48 and 72 hrs. These data show promising therapeutic potential of PG-1 against dengue infection, hence it warrants further analysis and improvement of the peptide features as a prospective starting point for consideration in designing attractive dengue virus inhibitors.


Sign in / Sign up

Export Citation Format

Share Document