scholarly journals A83 INTESTINAL EPITHELIAL CELL STEMNESS AND DIFFERENTIATION ARE REGULATED BY THE HIPPO PATHWAY EFFECTOR YAP1

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. 97-98
Author(s):  
S Fallah ◽  
J Beaulieu

Abstract Background The high rate of cell turnover in the intestinal epithelium is supported by the LGR5+ crypt base columnar (CBC) stem cells, which are located at the lower part of the gland. Among of the various factors and signals like Wnt and Notch, YAP1 (yes associated protein) also plays an important role in stemness of CBC stem cells. YAP1 is the effector of the Hippo pathway. Hippo Pathway restricts the cells proliferation, tissues overgrowth and cancer formation through the phosphorylation and inactivation of the YAP1 protein. When active, YAP1 transfers into nucleus, forms the complex with TEADs transcription factors and promotes the transcription of genes involved in cell growth and proliferation. Aims In the present study, we investigated the role of the YAP1 in the colorectal cancer multipotent HT29 cell line, which contain cancer stem cells (CSC). Methods For approaching to this goal, YAP1 expression was knocked down using shRNAs in HT29 cells. Then stem cells and intestinal cell lineages (secretory goblet, Paneth and enteroendocrine and absorptive) markers expression was analyzed using qPCR and Western blot. Results The results showed the reduction of the expression of stem cells markers including LGR5 in YAP1 knockdown HT29 cells compare with control. Expression of the goblet cells markers (MUC2 and trefoil factor 3) and absorptive cells markers (sucrase-isomaltase and dipeptidylpeptidase IV) were significantly increased in YAP1 knockdown cells but Paneth (DEFA5 and lysozyme) and enteroendocrine (CHGA) were not detected. Finally, examination of the main transcription factors for intestinal differentiation revealed an increase in CDX2 expression. Conclusions These results suggest that YAP1 is involved in the maintenance of colorectal cancer stem cells while preventing intestinal differentiation in both secretory and absorptive lineages through the repression of CDX2. Funding Agencies CIHR

Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1895 ◽  
Author(s):  
Sepideh Fallah ◽  
Jean-François Beaulieu

The human intestine is covered by epithelium, which is continuously replaced by new cells provided by stem cells located at the bottom of the glands. The maintenance of intestinal stem cells is supported by a niche which is composed of several signaling proteins including the Hippo pathway effectors YAP1/TAZ. The role of YAP1/TAZ in cell proliferation and regeneration is well documented but their involvement on the differentiation of intestinal epithelial cells is unclear. In the present study, the role of YAP1/TAZ on the differentiation of intestinal epithelial cells was investigated using the HT29 cell line, the only multipotent intestinal cell line available, with a combination of knockdown approaches. The expression of intestinal differentiation cell markers was tested by qPCR, Western blot, indirect immunofluorescence and electron microscopy analyses. The results show that TAZ is not expressed while the abolition of YAP1 expression led to a sharp increase in goblet and absorptive cell differentiation and reduction of some stem cell markers. Further studies using double knockdown experiments revealed that most of these effects resulting from YAP1 abolition are mediated by CDX2, a key intestinal cell transcription factor. In conclusion, our results indicate that YAP1/TAZ negatively regulate the differentiation of intestinal epithelial cells through the inhibition of CDX2 expression.


2014 ◽  
Vol 23 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Claudiu Margaritescu ◽  
Daniel Pirici ◽  
Irina Cherciu ◽  
Alexandru Barbalan ◽  
Tatiana Cârtâna ◽  
...  

Background & Aims: Colorectal cancer represents the third most common malignancy and the fourth most common cause of cancer death worldwide. The existence of drug-resistant colon cancer stem cells is thought to be one of the most important reasons behind treatment failure in colon cancer, their existence putatively leading to metastasis and recurrences. The aim of our study was to investigate the immunoexpression patterns of CD133 and CD166 in colon carcinoma, both individually and in combination, assessing their significance as prognostic markers.Methods. A total of 45 retrospective colon adenocarcinoma cases were investigated by enzymatic and multiple fluorescence immunohistochemistry for their CD133 and CD166 expression and colocalization.Results. Both CD133 and CD166 were expressed to different extents in all cancer specimens, with apredominant cytoplasmic pattern for CD133 and a more obvious membranous-like pattern for CD166.Overall, when comparing their reactivity for the tumoral tissue, CD166 expression areas seemed to be smaller than those of CD133. However, there was a direct correlation between CD133 and CD166 expression levels throughout the entire spectrum of lesions, with higher values for dysplastic lesions. Colocalization of CD133/ CD166 was obvious at the level of cells membranes, with higher coeficients in high grade dysplasia, followed by well and moderate differentiated tumours.Conclusions. CD133/CD166 colocalization is an early event occurring in colon tumorigenesis, with thehighest coeficients recorded for patients with high grade dysplasia, followed by well differentiated tumours. Thus, we consider that the coexpression of these two markers could be useful for further prognostic andtherapeutically stratification of patients with colon cancer.Abbreviations: AJCC - American Joint Committee on Cancer; CCD - charge-coupled device camera sensor; CD133 - prominin-1 (PROM1); CD166 - Activated Leukocyte Cell Adhesion Molecule (ALCAM); CRC - colorectal cancer; CSC - cancer stem cells; DAB - 3,3'-diaminobenzidine chromogen; DAPI - 4',6-diamidino- 2-phenylindole; HE - Hematoxylin and eosin staining; HGD - high grade dysplasia; HRP - horseradish peroxidase; LGD - low grade dysplasia; SDS - sodium dodecyl sulfate*Part of this work has been accepted as a poster presentation at the Digestive Disease Week (DDW) meeting, Chicago, IL, USA May 3-6, 2014


2016 ◽  
Vol 16 (9) ◽  
pp. 738-754 ◽  
Author(s):  
Xiaoming Liu ◽  
Qi Fu ◽  
Yong Du ◽  
Yinxue Yang ◽  
William C. Cho

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii201-ii202
Author(s):  
Miranda Tallman ◽  
Abigail Zalenski ◽  
Amanda Deighen ◽  
Morgan Schrock ◽  
Sherry Mortach ◽  
...  

Abstract Glioblastoma (GBM) is a malignant brain tumor with nearly universal recurrence. GBM cancer stem cells (CSCs), a subpopulation of radio- and chemo-resistant cancer cells capable of self-renewal, contribute to the high rate of recurrence. The anti-cancer agent, CBL0137, inhibits the FACT (facilitates chromatin transcription) complex leading to cancer cell specific cytotoxicity. Here, we show that CBL0137 sensitized GBM CSCs to radiotherapy using both in vitro and in vivo models. Treatment of CBL0137 combined with radiotherapy led to increased DNA damage in GBM patient specimens and failure to resolve the damage led to decreased cell viability. Using clonogenic assays, we confirmed that CBL0137 radiosensitized the CSCs. To validate that combination therapy impacted CSCs, we used an in vivo subcutaneous model and showed a decrease in the frequency of cancer stem cells present in tumors as well as decreased tumor volume. Using an orthotopic model of GBM, we confirmed that treatment with CBL0137 followed by radiotherapy led to significantly increased survival compared to either treatment alone. Radiotherapy remains a critical component of patient care for GBM, even though there exists a resistant subpopulation. Radio-sensitizing agents, including CBL0137, pose an exciting treatment paradigm to increase the efficacy of irradiation, especially by inclusively targeting CSCs.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1833
Author(s):  
Tsai-Tsen Liao ◽  
Wei-Chung Cheng ◽  
Chih-Yung Yang ◽  
Yin-Quan Chen ◽  
Shu-Han Su ◽  
...  

Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial–mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.


2013 ◽  
Vol 28 (3) ◽  
pp. 267-273 ◽  
Author(s):  
Marica Gemei ◽  
Rosa Di Noto ◽  
Peppino Mirabelli ◽  
Luigi Del Vecchio

In colorectal cancer, CD133+ cells from fresh biopsies proved to be more tumorigenic than their CD133– counterparts. Nevertheless, the function of CD133 protein in tumorigenic cells seems only marginal. Moreover, CD133 expression alone is insufficient to isolate true cancer stem cells, since only 1 out of 262 CD133+ cells actually displays stem-cell capacity. Thus, new markers for colorectal cancer stem cells are needed. Here, we show the extensive characterization of CD133+ cells in 5 different colon carcinoma continuous cell lines (HT29, HCT116, Caco2, GEO and LS174T), each representing a different maturation level of colorectal cancer cells. Markers associated with stemness, tumorigenesis and metastatic potential were selected. We identified 6 molecules consistently present on CD133+ cells: CD9, CD29, CD49b, CD59, CD151, and CD326. By contrast, CD24, CD26, CD54, CD66c, CD81, CD90, CD99, CD112, CD164, CD166, and CD200 showed a discontinuous behavior, which led us to identify cell type-specific surface antigen mosaics. Finally, some antigens, e.g. CD227, indicated the possibility of classifying the CD133+ cells into 2 subsets likely exhibiting specific features. This study reports, for the first time, an extended characterization of the CD133+ cells in colon carcinoma cell lines and provides a “dictionary” of antigens to be used in colorectal cancer research.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 611
Author(s):  
Kelly Coffey

Identifying novel therapeutic targets for the treatment of prostate cancer (PC) remains a key area of research. With the emergence of resistance to androgen receptor (AR)-targeting therapies, other signalling pathways which crosstalk with AR signalling are important. Over recent years, evidence has accumulated for targeting the Hippo signalling pathway. Discovered in Drosophila melanogasta, the Hippo pathway plays a role in the regulation of organ size, proliferation, migration and invasion. In response to a variety of stimuli, including cell–cell contact, nutrients and stress, a kinase cascade is activated, which includes STK4/3 and LATS1/2 to inhibit the effector proteins YAP and its paralogue TAZ. Transcription by their partner transcription factors is inhibited by modulation of YAP/TAZ cellular localisation and protein turnover. Trnascriptional enhanced associate domain (TEAD) transcription factors are their classical transcriptional partner but other transcription factors, including the AR, have been shown to be modulated by YAP/TAZ. In PC, this pathway can be dysregulated by a number of mechanisms, making it attractive for therapeutic intervention. This review looks at each component of the pathway with a focus on findings from the last year and discusses what knowledge can be applied to the field of PC.


Sign in / Sign up

Export Citation Format

Share Document