Conventional Sampling Plan for Scouting Neoleucinodes elegantalis (Lepidoptera: Crambidae) Eggs on Tomato Fruits

2019 ◽  
Vol 112 (5) ◽  
pp. 2433-2440 ◽  
Author(s):  
Ézio M Silva ◽  
André L B Crespo ◽  
Elizeu S Farias ◽  
Leandro Bacci ◽  
Renan B Queiroz ◽  
...  

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée), is an important pest of tomato (Solanum lycopersicum L.) in South and Central America. This pest is a potential threat for many tomato-producing areas and was listed in 2014 as an A1 quarantine pest by the European and Mediterranean Plant Protection Organization. Soon after hatching, the neonate N. elegantalis larvae penetrate the fruits where they feed until pupation. Therefore, effective N. elegantalis management relies on the timely scouting of egg densities to allow decision-making prior to penetration of neonates into fruits. This study aimed to develop a conventional sampling plan for scouting N. elegantalis eggs on tomato plants. The most representative and precise sampling unit was the most basal fruit cluster for plants bearing up to three clusters (S1 plants). For plants with more than three fruit clusters (S2 plants), the most representative and precise sampling unit was the combination of the second and third fruit clusters. Among the four variables evaluated (eggs/fruit, egg masses/fruit, percentage fruit with eggs, and percentage clusters with eggs), the percentage of clusters with eggs was the most economical for N. elegantalis sampling based on the number of samples and cost required. For this variable, the number of samples determined at the 25% error level was 42 and 36 samples for S1 and S2 plants, respectively. The sampling plan developed for scouting N. elegantalis is fast, reflects pest infestation in tomato fields, and costs less than US$1.50 per field scouted.

2019 ◽  
Vol 112 (4) ◽  
pp. 1946-1952 ◽  
Author(s):  
Mayara C Lopes ◽  
Arthur V Ribeiro ◽  
Thiago L Costa ◽  
Lucas de P Arcanjo ◽  
Elizeu S Farias ◽  
...  

Abstract The pea leafminer, Liriomyza huidobrensis (Blanchard), is an important pest of tomato crops worldwide. Conventional sampling plans are the starting point for the development of pest control decision-making. The present study aimed to develop a conventional sampling plan for L. huidobrensis during the vegetative and reproductive stages of tomato (Solanum Lycopersicum L.). The best sampling unit for vegetative and reproductive stages of tomato crops was determined. The frequency distributions of L. huidobrensis densities in tomato crops were assessed, and the ideal number of samples to constitute the sampling plan was determined. The basal leaf of the middle section of the plant canopy was the best plant part for sampling. Pea leafminer densities were fitted to the negative binomial distribution with a common aggregation parameter (Kcommon = 0.7289) that represents all tomato fields. The sampling plan consists of 73 samples per field, irrespective of field size (1, 5, or 10 ha). Evaluations using this sampling plan were performed in 47 min, 1 h 9 min, and 1 h 25 min at a cost of US$1.74, US$2.54, and US$3.12 per sampling in fields of 1, 5, and 10 ha, respectively. The sampling plan developed in this study may lead to more well-informed decision-making for controlling L. huidobrensis in tomato fields up to 10 ha. Additionally, it is inexpensive (up to US$3.12 per sampling area), fast (up to 1 h 25 min per sampling area), and practical (it can be used in tomato crops at the vegetative and reproductive stages).


2020 ◽  
Vol 60 (1) ◽  
pp. 169-176
Author(s):  
A. S. Zeynalov

In the production of planting material, it is important to choose a healthy, highly productive source material, with typical varietal characteristics, and, if necessary, their disinfection), as well as reliable protection against dangerous pests at further stages of cultivation. This requires a scientifically based methodological approach and phytosanitary measures in several areas. First of all, it is required to study and classify in detail hazardous pests and pathogens, select methods for accounting and identifying in accordance with their degree of danger and the quality category of planting material. Apply comprehensive measures to prevent the entry of pests in the territory of growing planting material and timely eliminate the centers of potential threat.


2019 ◽  
pp. 38-48
Author(s):  
L.R. Khakimova ◽  
A.M. Lavina ◽  
L.R. Karimova ◽  
V.V. Fedyaev ◽  
An.Kh. Baymiev ◽  
...  

A Pseudomonas sp. 102 strain, which is highly resistant to toxic effects of cadmium and has plant growth-promoting activity, can significantly increase growth parameters and biomass of tomato plants, including those observed under toxic effects of cadmium. The greatest positive effect was observed in plants transformed with the bacterial adhesin gene rapA1, the product of which is important for colonization of plant roots by bacteria. It was also shown that shoots of transgenic tomato plants accumulated the greatest amount of cadmium during inoculation with Pseudomonas sp. 102. The ability to extract high concentrations of cadmium and accumulate a large biomass under stress opens up prospects for the further use of associative interactions between tomato and Pseudomonas for phytoremediation. phytoremediation, cadmium, tomato, Pseudomonas, inoculation, agglutinins, This study was carried out using the equipment of the Biomika Centre for Collective Use of the Institute of Biochemistry and Genetics (Ufa Federal Research Centre, Russian Academy of Sciences) as part of the government task (project no. AAAA-A16-1160203500284). This study was supported by the Russian Foundation for Basic Research (project nos. 18-34-20004 and 18-34-00033) and 18-344-0033 mol_a_ved and 34-00033 mol_a).


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 175 ◽  
Author(s):  
Hipólito Hernández-Hernández ◽  
Antonio Juárez-Maldonado ◽  
Adalberto Benavides-Mendoza ◽  
Hortensia Ortega-Ortiz ◽  
Gregorio Cadenas-Pliego ◽  
...  

Saline stress severely affects the growth and productivity of plants. The activation of hormonal signaling cascades and reactive oxygen species (ROS) in response to salt stress are important for cellular detoxification. Jasmonic acid (JA) and the enzyme SOD (superoxide dismutase), are well recognized markers of salt stress in plants. In this study, the application of chitosan-polyvinyl alcohol hydrogels (Cs-PVA) and copper nanoparticles (Cu NPs) on the growth and expression of defense genes in tomato plants under salt stress was evaluated. Our results demonstrate that Cs-PVA and Cs-PVA + Cu NPs enhance plant growth and also promote the expression of JA and SOD genes in tomato (Solanum lycopersicum L.), under salt stress. We propose that Cs-PVA and Cs-PVA + Cu NPs mitigate saline stress through the regulation of oxidative and ionic stress.


2021 ◽  
Author(s):  
Abdeljelil Bakri

Abstract Native to South and South-East Asia, B. zonata is now found in more than 20 countries. The potential risk of its introduction to a new area is facilitated by increasing international tourism and trade, and is influenced by changes in climate and land use. After introduction, it can easily adapt and spread as it is a polyphagous species and has a high reproductive potential (as many as 564 eggs in a lifetime), high biotic potential (several generations of progeny in a year), and a rapid dispersal ability. B. zonata is a strong flier and can be active throughout the year. Economic impacts may result primarily from the loss of export markets and the costly requirement of quarantine restrictions and eradication measures. Furthermore, its establishment may have a serious impact on the environment following the initiation of chemical and/or biological control programmes. B. zonata is of quarantine significance to EPPO (the European and Mediterranean Plant Protection Organization) countries. The pest is classified on the A1 List of Pests recommended for regulation as quarantine pests.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 771 ◽  
Author(s):  
Petronia Carillo ◽  
Sheridan L. Woo ◽  
Ernesto Comite ◽  
Christophe El-Nakhel ◽  
Youssef Rouphael ◽  
...  

Many Trichoderma are successfully used to improve agriculture productivity due to their capacity for biocontrol and to stimulate plant growth and tolerance to abiotic stress. This research elucidates the effect of applications with Trichoderma harzianum strain T22 (T22), or biopolymer (BP) alone or in combination (BP + T22 or BP + 6-pentyl-α-pyrone (6PP); a Trichoderma secondary metabolite) on the crop performance, nutritional and functional quality of greenhouse tomato (Solanum lycopersicum L. cultivar Pixel). T22 elicited significant increases in total yield (+40.1%) compared to untreated tomato. The content of lycopene, an important antioxidant compound in tomatoes, significantly increased upon treatment with T22 (+ 49%), BP + T22 (+ 40%) and BP + 6PP (+ 52%) compared to the control. T22 treatments significantly increased the content of asparagine (+37%), GABA (+87%) and MEA (+102%) over the control; whereas BP alone strongly increased GABA (+105%) and MEA (+85%). The synthesis of these compounds implies that tomato plants are able to reuse the photorespiratory amino acids and ammonium for producing useful metabolites and reduce the pressure of photorespiration on plant metabolism, thus optimizing photosynthesis and growth. Finally, these metabolites exert many beneficial effects for human health, thus enhancing the premium quality of plum tomatoes.


Insects ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Peter Hondelmann ◽  
Christina Paul ◽  
Monika Schreiner ◽  
Rainer Meyhöfer

The cabbage whitefly Aleyrodes proletella (L.) (Hemiptera: Aleyrodidae) is an important pest of a wide range of vegetable Brassicas. Since the control of this pest is still challenging, new approaches such as the use of resistant cultivars are required. For this, we screened 16 commercialised Brussels sprout cultivars for resistance against this species. Antibiosis was tested with no-choice experiments in a climate chamber, using reproduction, mortality, longevity, developmental time and weight as parameters. Antixenosis was screened in three choice experiments with circular design in a greenhouse to detect cultivar preferences. A field trial with both antibiosis and antixenosis tests was done to verify results under natural conditions. Finally, for several cultivars, also the leaf glucosinolate concentrations were analysed. Cabbage whiteflies showed on certain cultivars significantly increased mortality, prolonged developmental times and reduced weights. Besides, some cultivars were significantly less infested. However, the incidence of antibiosis and antixenosis as well as the glucosinolate patterns were partly inconsistent. Although a number of moderately resistant cultivars could be identified, the detected resistance is certainly not strong and consistent enough as an exclusive measure of a plant protection strategy but might become a component of a multi-layered strategy against cabbage whiteflies.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 350 ◽  
Author(s):  
Parvin ◽  
Hasanuzzaman ◽  
Bhuyan ◽  
Nahar ◽  
Mohsin ◽  
...  

Salinity toxicity and the post-stress restorative process were examined to identify the salt tolerance mechanism in tomato, with a focus on the antioxidant defense and glyoxalase systems. Hydroponically grown 15 day-old tomato plants (Solanum lycopersicum L. cv. Pusa Ruby) were treated with 150 and 250 mM NaCl for 4 days and subsequently grown in nutrient solution for a further 2 days to observe the post-stress responses. Under saline conditions, plants showed osmotic stress responses that included low leaf relative water content and high proline content. Salinity induced oxidative stress by the over-accumulation of reactive oxygen species (H2O2 and O2•−) and methylglyoxal. Salinity also impaired the non-enzymatic and enzymatic components of the antioxidant defense system. On the other hand, excessive Na+ uptake induced ionic stress which resulted in a lower content of other minerals (K+, Ca2+, and Mg2+), and a reduction in photosynthetic pigment synthesis and plant growth. After 2 days in the normal nutrient solution, the plants showed improvements in antioxidant and glyoxalase system activities, followed by improvements in plant growth, water balance, and chlorophyll synthesis. The antioxidant and glyoxalase systems worked in concert to scavenge toxic reactive oxygen species (ROS), thereby reducing lipid peroxidation and membrane damage. Taken together, these findings indicate that tomato plants can tolerate salinity and show rapid post-stress recovery by enhancement of their antioxidant defense and glyoxalase systems.


Sign in / Sign up

Export Citation Format

Share Document