scholarly journals Potato Psyllid (Hemiptera: Triozidae) Behavior on Three Potato Genotypes With Tolerance to ‘Candidatus Liberibacter solanacearum’

2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Austin N Fife ◽  
Karin Cruzado ◽  
Arash Rashed ◽  
Richard G Novy ◽  
Erik J Wenninger

Abstract The potato/tomato psyllid Bactericera cockerelli (Šulc) transmits ‘Candidatus Liberibacter solanacearum’ (Lso) (also known as ‘Candidatus Liberibacter psyllaurous’), the bacterium associated with zebra chip disease (ZC) in potato. When disease incidence is high, ZC causes large economic losses through reductions in potato yield and tuber quality. No commercial potato variety has been found totally resistant to the pathogen. We evaluated host acceptance behaviors using no-choice assays on three breeding clones derived from Solanum chacoense Bitter with putative tolerance to Lso and/or ZC as part of an effort to determine whether the disease tolerance observed in those breeding clones was related to effects on psyllid settling behavior. We also counted the number of eggs laid and nymphs hatched on the different genotypes to observe any differences in reproduction. The potato variety ‘Russet Burbank’ was used as a susceptible control. Probing frequency and female walking duration were greater on Russet Burbank than the other genotypes. Oviposition did not differ among genotypes. However, female psyllids on two of the Lso-tolerant genotypes displayed reduced fertility 18–24 d after confinement with a male, relative to females on Russet Burbank. These results suggest that although the germplasms display minor abiotic activity on psyllid fertility, tolerance to Lso may be more strongly linked with plant tolerance to the pathogen rather than effects on host acceptance behaviors.

Insects ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 298
Author(s):  
Jing Wan ◽  
Rui Wang ◽  
Yonglin Ren ◽  
Simon McKirdy

The tomato potato psyllid (TPP), Bactericera cockerelli, is a psyllid native to North America that has recently invaded New Zealand and Australia. The potential for economic losses accompanying invasions of TPP and its associated bacterial plant pathogen Candidatus Liberibacter solanacearum (CLso), has caused much concern. Here, we employed ecological niche models to predict environments suitable for TPP/CLso on a global scale and then evaluated the extent to which global potato cultivation is at risk. In addition, at a finer scale the risk to the Australian potato acreage was evaluated. A total of 86 MaxEnt models were built using various combinations of settings and climatic predictors, and the best model based on model evaluation metrics was selected. Climatically suitable habitats were identified in Eurasia, Africa, South America, and Australasia. Intersecting the predicted suitability map with land use data showed that 79.06% of the global potato cultivation acreage, 96.14% of the potato production acreage in South America and Eurasia, and all the Australian potato cropping areas are at risk. The information generated by this study increases knowledge of the ecology of TPP/CLso and can be used by government agencies to make decisions about preventing the spread of TPP and CLso across the globe.


Plant Disease ◽  
2018 ◽  
Vol 102 (3) ◽  
pp. 561-568 ◽  
Author(s):  
Arash Rashed ◽  
Nora Olsen ◽  
Christopher M. Wallis ◽  
Li Paetzold ◽  
Lynn Woodell ◽  
...  

Zebra chip (ZC) disease of potato is associated with the putative pathogen ‘Candidatus Liberibacter solanacearum’, which is transmitted by the potato psyllid Bactericera cockerelli (Hem., Triozidae). The present study was initiated to investigate ‘Ca. L. solanacearum’ development during and following typical commercial storage practices. Using bacteriliferous psyllids, Russet Norkotah potato tubers were infested in field cages 14, 10, and 4 days before harvest. Changes in ‘Ca. L. solanacearum’ detection rate, ‘Ca. L. solanacearum’ titer, and concentrations of phenolic compounds were documented throughout storage. ‘Ca. L. solanacearum’ titer continued to increase during storage. Although significant increases in the frequency of ‘Ca. L. solanacearum’ detection were observed in all infestation treatments, the impact of ‘Ca. L. solanacearum’ infection on tuber quality remained comparatively low in plants infected 4 days before harvest, because the majority of the tubers remained asymptomatic. Minimizing storage and retail chain movement durations would help to limit ‘Ca. L. solanacearum’ impact on tuber quality in tubers infected 14 and 10 days before harvest. This study also demonstrated that ‘Ca. L. solanacearum’ can relocate from a newly infected leaf to a tuber in as little as 4 days. Psyllid management is recommended until at least 4 days before green harvest, when psyllid pressure is high in fields in which tubers are destined for commercial storage.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1245-1245 ◽  
Author(s):  
B. Bextine ◽  
E. Aguilar ◽  
A. Rueda ◽  
O. Caceres ◽  
V. G. Sengoda ◽  
...  

In April of 2012, tomato plants (Solanum lycopersicum) grown near the town of Yuroconte in the municipality of La Palma, Chalatenango, El Salvador, were observed with symptoms resembling those of “Candidatus Liberibacter solanacearum” infection. The symptoms included overall chlorosis, severe stunting, leaf cupping, excessive branching of axillary shoots, and leaf purpling and scorching (1,2,3). Disease incidence in several fields in the area ranged from 40 to 60%. Heavy infestations of the potato/tomato psyllid, Bactericera cockerelli, were observed in the affected fields and this insect has been shown to transmit “Ca. L. solanacearum” to tomato and other solanaceous species (1,2,3). Leaf samples and psyllids were collected from one of the fields and total DNA was purified from the leaves of 8 and 10 symptomatic and asymptomatic plants, respectively (2,3). DNA was also extracted from the psyllids and the samples were tested by PCR for species confirmation. PCR oligonucleotide primers specific for both 16S rDNA (OA2 and OI2c) and a gene for a surface antigen for the outer membrane protein (OMB) (OMB 1482f and 2086r) of “Ca. L. solanacearum” were used to confirm the presence of the bacterium in infected tomatoes (1). Four of the eight symptomatic tomatoes (50%) tested positive for “Ca. L. solanacearum” using both primer pairs and all asymptomatic plants were negative for the bacterium. The collected psyllids were first identified through a morphological key, then verified using species-specific PCR primers (CO1 F3 and CO1 meltR) that generated a 94-bp fragment that was consistent with DNA from B. cockerelli (4). Amplicons generated with DNA from two plant samples with each primer pair were cloned and four clones of each of the four amplicons were sequenced. BLASTn analysis of the 16S rDNA consensus sequences from the clones (1,168 bp; deposited in GenBank as Accession Nos. KC768318 and KC768319) showed 100% identity to “Ca. L. solanacearum” sequences in GenBank (HM246509 and HM245242, respectively). Two OMB consensus sequences were 98% identical (deposited in GenBank as KC768326 and KC768327) and both sequences were 97 to 100% identical to a number of “Ca. L. solanacearum” sequences in GenBank (e.g., CP002371, FJ914617, JN848754, and JN848752). To our knowledge, this is the first report of “Ca. L. solanacearum” associated with tomato in El Salvador and the first formal report of the bacterium in the country. This bacterium has caused millions of dollars in losses to the tomato industry in New Zealand, Mexico and the United States (2,3). Tomatoes are an economically important commodity in Central America and are severely damaged by “Ca. L. solanacearum” infection. The confirmation of “Ca. L. solanacearum” infections in El Salvador alerts the agricultural sector to the presence of this serious pathogen. References: (1) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza et al. Plant Dis. 93:1076, 2009. (4) K. D. Swisher et al. Environ. Entomol. 41:1019, 2012.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1154
Author(s):  
Jisun H.J. Lee ◽  
Henry O. Awika ◽  
Guddadarangavvanahally K. Jayaprakasha ◽  
Carlos A. Avila ◽  
Kevin M. Crosby ◽  
...  

The bacterial pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) is transmitted by the tomato potato psyllid (TPP), Bactericera cockerelli, to solanaceous crops. In the present study, the changes in metabolic profiles of insect-susceptible (cv CastleMart) and resistant (RIL LA3952) tomato plants in response to TPP vectoring Lso or not, were examined after 48 h post infestation. Non-volatile and volatile metabolites were identified and quantified using headspace solid-phase microextraction equipped with a gas chromatograph-mass spectrometry (HS-SPME/GC-MS) and ultra-high pressure liquid chromatography coupled to electrospray quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS), respectively. Partial least squares-discriminant analysis (PLS-DA) was used to define the major uncorrelated metabolite components assuming the treatments as the correlated predictors. Metabolic changes in various classes of metabolites, including volatiles, hormones, and phenolics, were observed in resistant and susceptible plants in response to the insects carrying the pathogen or not. The results suggest the involvement of differentially regulated and, in some cases, implicates antagonistic metabolites in plant defensive signaling. Upon validation, the identified metabolites could be used as markers to screen and select breeding lines with enhanced resistance to reduce economic losses due to the TPP-Lso vector-pathogen complex in Solanaceous crops.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1375-1375 ◽  
Author(s):  
E. Aguilar ◽  
V. G. Sengoda ◽  
B. Bextine ◽  
K. F. McCue ◽  
J. E. Munyaneza

Tomato (Lycopersicum esculentum) crops grown in several departments of Honduras and heavily infested with the psyllid Bactericera cockerelli were observed in April of 2012 with plant symptoms suggestive of “Candidatus Liberibacter solanacearum” infection. B. cockerelli is a serious pest of potato, tomato, and other solanaceous plants and a vector of “Ca. L. solanacearum” (1,2,3,4). The symptoms included overall chlorosis, severe stunting, leaf cupping, excessive branching of axillary shoots, and leaf purpling and scorching (2,3). Disease incidence ranged from 5 to 50% symptomatic plants per field. Tomato (cv. Pony) plant samples were collected from two psyllid-infested commercial fields in the municipalities of Danli and Comayagua in the departments of El-Paraiso and Comayagua, respectively. Total DNA was extracted from leaf tissues of 50 and 20 symptomatic and asymptomatic plants, respectively, with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (1,3). The DNA samples were tested for “Ca. L. solanacearum” by PCR with primer pairs specific for 16S rDNA (OA2 and OI2c) and the outer membrane protein gene (OMB 1482f and 2086r) of the bacterium (1,2). Ten (20%) of the 50 symptomatic tomato samples were positive for “Ca. L. solanacearum” using both primer pairs and the remaining samples were negative for the bacterium with both primer sets. None of the 20 asymptomatic plants tested positive for “Ca. L. solanacearum”. Amplicons from DNA of two plant samples (one plant/municipality) with each primer pair were cloned and four clones of each of the four amplicons were sequenced. BLASTn analysis of the 16S rDNA consensus sequences from the clones (deposited in GenBank as Accession Nos. KC768321 and KC768322) were identical for both locations and showed 99 to 100% identity to several “Ca. L. solanacearum” sequences in GenBank (e.g., JN848753, JN84856, and HM246509). The OMB consensus sequences from the two tomato plants (deposited in GenBank as KC768329 and KC768330) were 100% identical to OMB sequences of Lso in GenBank (CP002371 and JN48754, respectively). To our knowledge, this is the first report of “Ca. Liberibacter solanacearum” associated with tomato crops in Honduras. This bacterium has caused millions of dollars in losses to the tomato industry in the United States, Mexico, and New Zealand (2,3,4). Serious damages to tomato crops due to “Ca. L. solanacearum” could expand throughout Central America, especially in those countries where B. cockerelli occurs. References: (1) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza et al. Plant Dis. 93:1076, 2009. (4) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1073
Author(s):  
Xiao-Tian Tang ◽  
Cecilia Tamborindeguy

Autophagy, also known as type II programmed cell death, is a cellular mechanism of “self-eating”. Autophagy plays an important role against pathogen infection in numerous organisms. Recently, it has been demonstrated that autophagy can be activated and even manipulated by plant viruses to facilitate their transmission within insect vectors. However, little is known about the role of autophagy in the interactions of insect vectors with plant bacterial pathogens. ‘Candidatus Liberibacter solanacearum’ (Lso) is a phloem-limited Gram-negative bacterium that infects crops worldwide. Two Lso haplotypes, LsoA and LsoB, are transmitted by the potato psyllid, Bactericera cockerelli and cause damaging diseases in solanaceous plants (e.g., zebra chip in potatoes). Both LsoA and LsoB are transmitted by the potato psyllid in a persistent circulative manner: they colonize and replicate within psyllid tissues. Following acquisition, the gut is the first organ Lso encounters and could be a barrier for transmission. In this study, we annotated autophagy-related genes (ATGs) from the potato psyllid transcriptome and evaluated their expression in response to Lso infection at the gut interface. In total, 19 ATGs belonging to 17 different families were identified. The comprehensive expression profile analysis revealed that the majority of the ATGs were regulated in the psyllid gut following the exposure or infection to each Lso haplotype, LsoA and LsoB, suggesting a potential role of autophagy in response to Lso at the psyllid gut interface.


Plant Disease ◽  
2021 ◽  
Author(s):  
Cesar Alejandro Reyes Corral ◽  
W. Rodney Cooper ◽  
Alexander V Karasev ◽  
Carolina Delgado-Luna ◽  
SERGIO R. Sanchez-PENA

The potato psyllid, Bactericera cockerelli (Šulc), (Hemiptera: Triozidae) is a pest of Solanaceous crops (Solanales) including potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum L.). Feeding by high populations of nymphs causes psyllid yellows while adults and nymphs are vectors of the plant pathogen, “Candidatus Liberibacter solanacearum” (Lso). Foliar symptoms that were consistent with either Lso-infection or psyllid yellows were observed in 2019 on tomatillo (Physalis ixocarpa Brot.; Solanaceae) grown within an experimental plot located near Saltillo, Mexico. This study had three primary objectives: 1) determine whether the foliar symptoms observed on tomatillo were associated with Lso infection, 2) identify the haplotypes of Lso and potato psyllids present in the symptomatic plot, and 3) use gut content analysis to infer the plant sources of Lso-infected psyllids. Results confirmed that 71% of symptomatic plants and 71% of psyllids collected from the plants were infected with Lso. The detection of Lso in plants and psyllids, and the lack of nymphal populations associated with psyllid yellows strongly suggests that the observed foliar symptoms were caused by Lso infection. All infected plants and insects harbored the more virulent Lso haplotype B, but one psyllid was also co-infected with haplotype A. The potato psyllids were predominantly of the central haplotype, but one psyllid was identified as the western haplotype. Molecular gut content analysis of psyllids confirmed the movement of psyllids between non-crop habitats and tomatillo and indicated that Lso infection of psyllids was associated with increased plant diversity in their diet.


2020 ◽  
Vol 113 (6) ◽  
pp. 2595-2603
Author(s):  
Cesar A Reyes Corral ◽  
W Rodney Cooper ◽  
David R Horton ◽  
Alexander V Karasev

Abstract The potato psyllid, Bactericera cockerelli (Šulc), is a major pest of potato (Solanum tuberosum L.; Solanales: Solanaceae) as a vector of ‘Candidatus Liberibacter solanacearum’, the pathogen that causes zebra chip. Management of zebra chip is challenging in part because the noncrop sources of Liberibacter-infected psyllids arriving in potato remain unknown. Adding to this challenge is the occurrence of distinct genetic haplotypes of both potato psyllid and Liberibacter that differ in host range. Longleaf groundcherry (Physalis longifolia Nutt.) has been substantially overlooked in prior research as a potential noncrop source of Liberibacter-infected B. cockerelli colonizing fields of potato. The objective of this study was to assess the suitability of P. longifolia to the three common haplotypes of B. cockerelli (central, western, and northwestern haplotypes), and to two haplotypes of ‘Ca. L. solanacearum’ (Liberibacter A and B haplotypes). Greenhouse bioassays indicated that B. cockerelli of all three haplotypes produced more offspring on P. longifolia than on potato and preferred P. longifolia over potato during settling and egg-laying activities. Greenhouse and field trials showed that P. longifolia was also highly susceptible to Liberibacter. Additionally, we discovered that infected rhizomes survived winter and produced infected plants in late spring that could then be available for psyllid colonization and pathogen acquisition. Results show that P. longifolia is susceptible to both B. cockerelli and ‘Ca. L. solanacearum’ and must be considered as a potentially important source of infective B. cockerelli colonizing potato fields in the western United States.


Sign in / Sign up

Export Citation Format

Share Document