scholarly journals Tomato Metabolic Changes in Response to Tomato-Potato Psyllid (Bactericera cockerelli) and Its Vectored Pathogen Candidatus Liberibacter solanacearum

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1154
Author(s):  
Jisun H.J. Lee ◽  
Henry O. Awika ◽  
Guddadarangavvanahally K. Jayaprakasha ◽  
Carlos A. Avila ◽  
Kevin M. Crosby ◽  
...  

The bacterial pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) is transmitted by the tomato potato psyllid (TPP), Bactericera cockerelli, to solanaceous crops. In the present study, the changes in metabolic profiles of insect-susceptible (cv CastleMart) and resistant (RIL LA3952) tomato plants in response to TPP vectoring Lso or not, were examined after 48 h post infestation. Non-volatile and volatile metabolites were identified and quantified using headspace solid-phase microextraction equipped with a gas chromatograph-mass spectrometry (HS-SPME/GC-MS) and ultra-high pressure liquid chromatography coupled to electrospray quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS), respectively. Partial least squares-discriminant analysis (PLS-DA) was used to define the major uncorrelated metabolite components assuming the treatments as the correlated predictors. Metabolic changes in various classes of metabolites, including volatiles, hormones, and phenolics, were observed in resistant and susceptible plants in response to the insects carrying the pathogen or not. The results suggest the involvement of differentially regulated and, in some cases, implicates antagonistic metabolites in plant defensive signaling. Upon validation, the identified metabolites could be used as markers to screen and select breeding lines with enhanced resistance to reduce economic losses due to the TPP-Lso vector-pathogen complex in Solanaceous crops.

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1073
Author(s):  
Xiao-Tian Tang ◽  
Cecilia Tamborindeguy

Autophagy, also known as type II programmed cell death, is a cellular mechanism of “self-eating”. Autophagy plays an important role against pathogen infection in numerous organisms. Recently, it has been demonstrated that autophagy can be activated and even manipulated by plant viruses to facilitate their transmission within insect vectors. However, little is known about the role of autophagy in the interactions of insect vectors with plant bacterial pathogens. ‘Candidatus Liberibacter solanacearum’ (Lso) is a phloem-limited Gram-negative bacterium that infects crops worldwide. Two Lso haplotypes, LsoA and LsoB, are transmitted by the potato psyllid, Bactericera cockerelli and cause damaging diseases in solanaceous plants (e.g., zebra chip in potatoes). Both LsoA and LsoB are transmitted by the potato psyllid in a persistent circulative manner: they colonize and replicate within psyllid tissues. Following acquisition, the gut is the first organ Lso encounters and could be a barrier for transmission. In this study, we annotated autophagy-related genes (ATGs) from the potato psyllid transcriptome and evaluated their expression in response to Lso infection at the gut interface. In total, 19 ATGs belonging to 17 different families were identified. The comprehensive expression profile analysis revealed that the majority of the ATGs were regulated in the psyllid gut following the exposure or infection to each Lso haplotype, LsoA and LsoB, suggesting a potential role of autophagy in response to Lso at the psyllid gut interface.


Insects ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 298
Author(s):  
Jing Wan ◽  
Rui Wang ◽  
Yonglin Ren ◽  
Simon McKirdy

The tomato potato psyllid (TPP), Bactericera cockerelli, is a psyllid native to North America that has recently invaded New Zealand and Australia. The potential for economic losses accompanying invasions of TPP and its associated bacterial plant pathogen Candidatus Liberibacter solanacearum (CLso), has caused much concern. Here, we employed ecological niche models to predict environments suitable for TPP/CLso on a global scale and then evaluated the extent to which global potato cultivation is at risk. In addition, at a finer scale the risk to the Australian potato acreage was evaluated. A total of 86 MaxEnt models were built using various combinations of settings and climatic predictors, and the best model based on model evaluation metrics was selected. Climatically suitable habitats were identified in Eurasia, Africa, South America, and Australasia. Intersecting the predicted suitability map with land use data showed that 79.06% of the global potato cultivation acreage, 96.14% of the potato production acreage in South America and Eurasia, and all the Australian potato cropping areas are at risk. The information generated by this study increases knowledge of the ecology of TPP/CLso and can be used by government agencies to make decisions about preventing the spread of TPP and CLso across the globe.


2010 ◽  
Vol 11 (1) ◽  
pp. 33 ◽  
Author(s):  
James M. Crosslin ◽  
Joseph E. Munyaneza ◽  
Judith K. Brown ◽  
Lia W. Liefting

Potato zebra chip (ZC) disease is a relative newcomer to the world of important potato diseases. First reported in Mexico in the 1990s, by 2004-2005 the disease was causing serious economic damage in parts of Texas. ZC is now widespread in the south-western and central United States, Mexico, Central America, and was recently reported in New Zealand. By 2006, there seemed to be an association between ZC and the potato psyllid (Bactericera cockerelli). The exact nature of the relationship, however, has only recently been identified by the discovery of a new Candidatus Liberibacter bacterium that is transmitted to potatoes, tomatoes, and other solanaceous hosts by the potato psyllid. This review examines the history of this disease, the association of ZC with the potato psyllid, the host range, and recent research into the bacterial pathogen. Accepted for publication 15 December 2009. Published 17 March 2010.


2020 ◽  
Vol 113 (6) ◽  
pp. 2595-2603
Author(s):  
Cesar A Reyes Corral ◽  
W Rodney Cooper ◽  
David R Horton ◽  
Alexander V Karasev

Abstract The potato psyllid, Bactericera cockerelli (Šulc), is a major pest of potato (Solanum tuberosum L.; Solanales: Solanaceae) as a vector of ‘Candidatus Liberibacter solanacearum’, the pathogen that causes zebra chip. Management of zebra chip is challenging in part because the noncrop sources of Liberibacter-infected psyllids arriving in potato remain unknown. Adding to this challenge is the occurrence of distinct genetic haplotypes of both potato psyllid and Liberibacter that differ in host range. Longleaf groundcherry (Physalis longifolia Nutt.) has been substantially overlooked in prior research as a potential noncrop source of Liberibacter-infected B. cockerelli colonizing fields of potato. The objective of this study was to assess the suitability of P. longifolia to the three common haplotypes of B. cockerelli (central, western, and northwestern haplotypes), and to two haplotypes of ‘Ca. L. solanacearum’ (Liberibacter A and B haplotypes). Greenhouse bioassays indicated that B. cockerelli of all three haplotypes produced more offspring on P. longifolia than on potato and preferred P. longifolia over potato during settling and egg-laying activities. Greenhouse and field trials showed that P. longifolia was also highly susceptible to Liberibacter. Additionally, we discovered that infected rhizomes survived winter and produced infected plants in late spring that could then be available for psyllid colonization and pathogen acquisition. Results show that P. longifolia is susceptible to both B. cockerelli and ‘Ca. L. solanacearum’ and must be considered as a potentially important source of infective B. cockerelli colonizing potato fields in the western United States.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2587-2591 ◽  
Author(s):  
Jennifer Dahan ◽  
Erik J. Wenninger ◽  
Brandon D. Thompson ◽  
Sahar Eid ◽  
Nora Olsen ◽  
...  

‘Candidatus Liberibacter solanacearum’ (Lso) is an uncultured, phloem-associated bacterium causing a severe tuber disease in potato called zebra chip (ZC). Seven haplotypes of Lso have been described in different hosts, with haplotypes A and B found associated with infections in potato and tomato. In the field, Lso is transmitted by the potato psyllid (Bactericera cockerelli), and between 2011 and 2015, a significant change in Lso haplotype prevalence was previously reported in Idaho: from exclusively A haplotype found in tested psyllids in 2012 to mainly B haplotype found in collected psyllids in 2015. However, prevalence of Lso haplotypes in Idaho was not analyzed in potato tubers exhibiting symptoms of ZC. To fill in this knowledge gap, prevalence of Lso haplotypes was investigated in potato tubers harvested in southern Idaho between 2012 and 2018, and it was found to change from exclusively A haplotype in the 2012 season to an almost equal A and B haplotype distribution during the 2016 season. During the same period, haplotype distribution of Lso in psyllid vectors collected using yellow sticky traps also changed, but in psyllids, the shift from A haplotype of Lso to B haplotype was complete, with no A haplotype detected in 2016 to 2018. The changes in the haplotype prevalence of the Lso circulating in potato fields in southern Idaho may be, among other factors, responsible for a decrease in the ZC incidence in Idaho potato fields between an outbreak of the disease in 2012 and a very low level of ZC afterward.


Plant Disease ◽  
2017 ◽  
Vol 101 (5) ◽  
pp. 822-829 ◽  
Author(s):  
Jennifer Dahan ◽  
Erik J. Wenninger ◽  
Brandon Thompson ◽  
Sahar Eid ◽  
Nora Olsen ◽  
...  

Zebra chip (ZC) disease, a serious threat to the potato industry, is caused by the bacterium ‘Candidatus Liberibacter solanacearum’ (Lso). Five haplotypes (hapA to hapE) of this pathogen have been described so far in different crops, with only hapA and hapB being associated with ZC in potato. Both haplotypes are vectored and transmitted to a variety of solanaceaeous plants by the tomato/potato psyllid, Bactericera cockerelli (Šulc). Psyllids are native to North America, and four haplotypes have been identified and named based on their predominant geographic association: Northwestern, Central, Western, and Southwestern. Although all psyllid haplotypes have been found in southern Idaho potato fields, data on relative haplotype abundances and dynamic changes in the fields over time have not previously been reported. Here, psyllid samples collected in Idaho potato fields from 2012 to 2015 were used to clarify spatial and temporal patterns in distribution and abundance of psyllid and Lso haplotypes. A shift from hapA toward hapB population of Lso was revealed during these four seasons, indicating possible evolution of Lso in Idaho fields. Although we confirmed that Western psyllids were the most abundant by far during the four seasons of observation, we also observed changes in abundance of other haplotypes, including increased diversity of psyllid haplotypes during 2015. Seasonal changes observed for the Northwestern and Central haplotypes could potentially be linked to psyllid migration and/or habitat changes. South-central Idaho exhibited more diversity in psyllid haplotypes than southwestern Idaho.


2017 ◽  
Vol 107 (1) ◽  
pp. 36-49 ◽  
Author(s):  
Joseph M. Cicero ◽  
Tonja W. Fisher ◽  
Jawwad A. Qureshi ◽  
Philip A. Stansly ◽  
Judith K. Brown

Previous studies have shown that the fastidious bacterial plant pathogen ‘Candidatus Liberibacter solanacearum’ (CLso) is transmitted circulatively and propagatively by the potato psyllid (PoP) Bactericera cockerelli. In this study, the temporal and spatial interrelationships between CLso PoP were investigated by scanning electron microscopy of the digestive system of PoP immature and adult instars and salivary glands of adults post CLso ingestion. CLso biofilms were not detectable on the outer midgut surface of the first and second instars; however, for third to fifth instars and teneral and mature adults, biofilms were observed in increasing numbers in each successive developmental stage. In adult PoP midguts, CLso cells were observed between the basal lamina and basal epithelial cell membranes; in basal laminar perforations, on the outer basal laminar surface, and in the ventricular lumen, epithelial cytosol, and filter chamber periventricular space. CLso were also abundantly visible in the salivary gland pericellular spaces and in the epidermal cell cytosol of the head. Collectively, these results point to an intrusive, systemic invasion of PoP by CLso that employs an endo/exocytosis-like mechanism, in the context of a propagative, circulative mode of transmission.


2011 ◽  
Vol 64 ◽  
pp. 259-268 ◽  
Author(s):  
K.L. Thomas ◽  
D.C. Jones ◽  
L.B. Kumarasinghe ◽  
J.E. Richmond ◽  
G.S.C. Gill ◽  
...  

The tomato potato psyllid (TPP) Bactericera cockerelli (Hemiptera Triozidae) was first notified to the New Zealand Ministry of Agriculture and Forestry (MAF) in May 2006 although it has been suggested by several authors to have been present in New Zealand in 2005 MAF undertook an entry pathway analysis during the initial investigation into TPP in 2006 TPP is a vector of the bacteriumlike pathogen Candidatus Liberibacter solanacearum (liberibacter) and MAF further analysed the entry pathway of TPP during the liberibacter incursion response in 2008 This paper summarises the data and reasoning behind the conclusion that TPP was most plausibly introduced to New Zealand as a result of smuggling rather than through slippage on regulated pathways


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Austin N Fife ◽  
Karin Cruzado ◽  
Arash Rashed ◽  
Richard G Novy ◽  
Erik J Wenninger

Abstract The potato/tomato psyllid Bactericera cockerelli (Šulc) transmits ‘Candidatus Liberibacter solanacearum’ (Lso) (also known as ‘Candidatus Liberibacter psyllaurous’), the bacterium associated with zebra chip disease (ZC) in potato. When disease incidence is high, ZC causes large economic losses through reductions in potato yield and tuber quality. No commercial potato variety has been found totally resistant to the pathogen. We evaluated host acceptance behaviors using no-choice assays on three breeding clones derived from Solanum chacoense Bitter with putative tolerance to Lso and/or ZC as part of an effort to determine whether the disease tolerance observed in those breeding clones was related to effects on psyllid settling behavior. We also counted the number of eggs laid and nymphs hatched on the different genotypes to observe any differences in reproduction. The potato variety ‘Russet Burbank’ was used as a susceptible control. Probing frequency and female walking duration were greater on Russet Burbank than the other genotypes. Oviposition did not differ among genotypes. However, female psyllids on two of the Lso-tolerant genotypes displayed reduced fertility 18–24 d after confinement with a male, relative to females on Russet Burbank. These results suggest that although the germplasms display minor abiotic activity on psyllid fertility, tolerance to Lso may be more strongly linked with plant tolerance to the pathogen rather than effects on host acceptance behaviors.


2015 ◽  
Vol 68 ◽  
pp. 441-441 ◽  
Author(s):  
A.M. Barnes ◽  
N.M. Taylor ◽  
J. Vereijssen

The tomato potato psyllid Bactericera cockerelli (TPP) and the bacterium it vectors Candidatus Liberibacter solanacearum (CLso) are collectively responsible for significant economic losses across New Zealands horticulture industry Crop host plants of TPP include potatoes tomatoes capsicums/ chilli peppers tamarillos and tobacco along with lessobvious species outside the Solanaceae family such as kumara (Convolvulaceae) Most of these plants are shortlived summer annuals which raises the question what happens to TPP when crops are absent Many less conspicuous noncrop plants also play host to TPP some of which are perennial and therefore present yearround potentially acting as reservoirs of both TPP and CLso in the absence of a crop A pilot study in 2012 and subsequent vegetation surveys in Canterbury and Hawkes Bay in 201314 confirmed the presence of all TPP life stages on multiple noncrop species yearround in both areas despite adverse climatic events such as winter frosts and snowfall These results have farreaching impacts on the way growers should manage the borders surrounding their crops and their land in the offseason


Sign in / Sign up

Export Citation Format

Share Document