scholarly journals Attraction Versus Capture II: Efficiency of the BG-Sentinel Trap Under Semifield Conditions and Characterizing Response Behaviors of Male Aedes aegypti (Diptera: Culicidae)

2020 ◽  
Vol 57 (5) ◽  
pp. 1539-1549 ◽  
Author(s):  
Brogan A Amos ◽  
Scott A Ritchie ◽  
Ring T Cardé

Abstract Aedes aegypti (L.) is an important vector of viruses causing dengue, Zika, chikungunya, and yellow fever and as such presents a serious threat to public health in tropical regions. Control programs involving ‘rear and release’ of modified male Ae. aegypti are underway and require effective trapping methods for surveillance of both the released insects and the impacted wild mosquito population. The BG-Sentinel trap (BGS) is widely used in Ae. aegypti surveillance but its level of efficiency, that is, what proportion of the mosquitoes encountering the trap are captured, is unknown. This is especially true for male mosquitoes, the behavior of which is incompletely understood. We tested the efficiency of two versions of the BGS for capturing male Ae. aegypti under semifield conditions with and without CO2 and a human skin odor mimic lure and with these baits combined. A navy-blue BGS trap emitting CO2 and a human skin odor mimic captured 18% of the released male Ae. aegypti, with a capture efficiency of 9 % (of the total encounters with the trap). Male Ae. aegypti had multiple encounters with the BGS that did not result in capture; they crossed over the trap entrance without being captured or landed on the sides of the trap. Swarming behavior around the BGS was also recorded, even when only a visual cue was present. Understanding male Ae. aegypti behaviors during an encounter with the BGS can inform improvement of trap design and therefore capture efficiency for surveillance in control programs.

2020 ◽  
Vol 57 (3) ◽  
pp. 884-892 ◽  
Author(s):  
Brogan A Amos ◽  
Kyran M Staunton ◽  
Scott A Ritchie ◽  
Ring T Cardé

Abstract Aedes aegypti (L.) is an important vector of viruses causing dengue, Zika, chikungunya, and yellow fever and as such is a threat to public health worldwide. Effective trapping methods are essential for surveillance of both the mosquito species and disease presence. The BG-Sentinel (BGS) is a widely used to trap Ae. aegypti but little is known of its efficiency, i.e., what proportion of the mosquitoes encountering the trap are captured. The first version of the BGS trap was predominantly white, and the current version is mostly navy blue. While this trap is often deployed without any olfactory lure, it can also be deployed with CO2 and/or a human skin odor mimic lure to increase capture rates. We tested the efficiency of capturing Ae. aegypti under semi-field conditions for the original white version without lures as well the blue version with and without various lure combinations. None of the configurations tested here captured 100% of the mosquitoes that encountered the trap. A navy-blue trap emitting CO2 and a skin odor mimic produced the highest capture (14% of the total insects in the semi-field cage), but its capture efficiency was just 5% (of mosquitoes encountering the trap). Mosquitoes often had multiple encounters with a trap that did not result in capture; they crossed over the trap entrance without being captured or landed on the sides of the trap. Understanding these behaviors and the factors that induce them has the potential to suggest improvement in trap design and therefore capture efficiency.


2020 ◽  
Vol 26 (33) ◽  
pp. 4092-4111
Author(s):  
Mikael A. de Souza ◽  
Larissa da Silva ◽  
Maria A. C. dos Santos ◽  
Márcia J. F. Macêdo ◽  
Luiz J. Lacerda-Neto ◽  
...  

The Aedes aegypti is responsible for the transmission of arboviruses, which compromise public health. In the search for synthetic product alternatives, essential oils (OEs) have been highlighted by many researchers as natural insecticides. This systematic review (SR) was performed according to PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and its objective was to evaluate studies addressing OEs with larvicidal properties against Ae. aegypti, through electronic database searches (Pubmed, Science Direct and Scielo), covering an overview of the plant sources OEs, which plant parts were used, the extraction methods, analytical techniques, major and/or secondary constituents with greater percentages, as well as the LC50s responsible for larval mortality. Following study analysis, plants distributed across 32 families, 90 genera and 175 species were identified. The Lamiaceae, Myrtaceae, Piperaceae, Asteraceae, Rutaceae, Euphorbiaceae and Lauraceae families obtained the highest number of species with toxic properties against larvae from this vector. Practically all plant parts were found to be used for OE extraction. Hydrodistillation and steam distillation were the main extraction methods identified, with GC-MS/GC-FID representing the main analytical techniques used to reveal their chemical composition, especially of terpene compounds. In this context, OEs are promising alternatives for the investigation of natural, ecologically correct and biodegradable insecticides with the potential to be used in Ae. aegypti control programs.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Tse-Yu Chen ◽  
Chelsea T. Smartt ◽  
Dongyoung Shin

Aedes aegypti, as one of the vectors transmitting several arboviruses, is the main target in mosquito control programs. Permethrin is used to control mosquitoes and Aedes aegypti get exposed due to its overuse and are now resistant. The increasing percentage of permethrin resistant Aedes aegypti has become an important issue around the world and the potential influence on vectorial capacity needs to be studied. Here we selected a permethrin resistant (p-s) Aedes aegypti population from a wild Florida population and confirmed the resistance ratio to its parental population. We used allele-specific PCR genotyping of the V1016I and F1534C sites in the sodium channel gene to map mutations responsible for the resistance. Two important factors, survival rate and vector competence, that impact vectorial capacity were checked. Results indicated the p-s population had 20 times more resistance to permethrin based on LD50 compared to the parental population. In the genotyping study, the p-s population had more homozygous mutations in both mutant sites of the sodium channel gene. The p-s adults survived longer and had a higher dissemination rate for dengue virus than the parental population. These results suggest that highly permethrin resistant Aedes aegypti populations might affect the vectorial capacity, moreover, resistance increased the survival time and vector competence, which should be of concern in areas where permethrin is applied.


2019 ◽  
Vol 57 (3) ◽  
pp. 957-961
Author(s):  
Kyran M Staunton ◽  
Barukh B Rohde ◽  
Michael Townsend ◽  
Jianyi Liu ◽  
Mark Desnoyer ◽  
...  

Abstract Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid Aedes Traps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape.


2018 ◽  
Vol 6 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Roopa Rani Samal ◽  
Sarita Kumar

Background: Mosquito control is a major concern throughout the world because of rising cases of mosquito-borne diseases. The outbreak of Zika, Dengue and Chikungunya has caused grave situations raising urgent need to control Aedes aegypti. Moreover, extensive use of synthetic insecticides in mosquito control programs has resulted in high levels of insecticide resistance leading to the use of magnified concentrations, impacting human health and environment adversely. The knowledge about current status of the insecticide susceptibility against Ae. aegypti could help to devise mosquito control strategy. Objective: Present study evaluates the larvicidal potential of thirteen insecticides belonging to seven different classes; organochlorines, organophosphates, carbamates, pyrethroids, neonicotinoids, avermectins and secondary metabolites; against early fourth instars of Ae. aegypti. Materials and Methods: The insecticide susceptibility was evaluated as per WHO protocol. Fatality counts were made after 24h of exposure; and the LC50, LC90 and other statistical parameters were computed by probit-regression analysis. Results: The data reveals the maximum efficacy of pyrethroids and fenitrothion, with lethal values less than 0.001 ppm. Avermectins, organochlorines and carbamates were moderately toxic, while neonicotinoid posed appreciable toxicity. In contrast, berberine, a secondary plant metabolite was found inefficient. The larvicidal efficacy of tested insecticides against Ae. aegypti was found in the decreasing order of pyrethroids > organophosphates > avermectins > organochlorines > carbamates > neonicotinoids > secondary metabolites. Conclusion: Present investigations explore various toxicants as Dengue vector control agents in order to devise a suitable control strategy for mosquito control in fields.


2021 ◽  
Vol 37 (4) ◽  
pp. 242-249
Author(s):  
Eva A. Buckner ◽  
Katie F. Williams ◽  
Samantha Ramirez ◽  
Constance Darrisaw ◽  
Juliana M. Carrillo ◽  
...  

ABSTRACT Aedes aegypti is the predominant vector of dengue, chikungunya, and Zika viruses. This mosquito is difficult to control with conventional methods due to its container-inhabiting behavior and resistance to insecticides. Autodissemination of pyriproxyfen (PPF), a potent larvicide, has shown promise as an additional tool to control Aedes species in small-scale field trials. However, few large-scale field evaluations have been conducted. We undertook a 6-month-long large-scale field study to compare the effectiveness and operational feasibility of using In2Care Mosquito Traps (In2Care Traps, commercially available Aedes traps with PPF and Beauveria bassiana) compared to an integrated vector management (IVM) strategy consisting of source reduction, larviciding, and adulticiding for controlling Ae. aegypti eggs, larvae, and adults. We found that while the difference between treatments was only statistically significant for eggs and larvae (P < 0.05 for eggs and larvae and P > 0.05 for adults), the use of In2Care Traps alone resulted in 60%, 57%, and 57% fewer eggs, larvae, and adults, respectively, collected from that site compared to the IVM site. However, In2Care Trap deployment and maintenance were more time consuming and labor intensive than the IVM strategy. Thus, using In2Care Traps alone as a control method for large areas (e.g., >20 ha) may be less practical for control programs with the capacity to conduct ground and aerial larviciding and adulticiding. Based on our study results, we conclude that In2Care Traps are effective at suppressing Ae. aegypti and have the most potential for use in areas without sophisticated control programs and within IVM programs to target hotspots with high population levels and/or risk of Aedes-borne pathogen transmission.


2017 ◽  
Author(s):  
Susiana Nugraha

Dengue hemorrhagic fever is a severe and fatal infection that occurs in tropical regions such as Indonesia. In 2014, recorded that dengue morbidity rate was 5.17 per 100,000 inhabitants (approximately 13031 cases) with mortality rate of 0.84% (110 deaths). Demographic and societal changes such as population growth, urbanization, and modern transportation appear to play an important role in the increased incidence and geographical spread of dengue virus. Aedes aegypti, the urban yellow fever mosquito, is also the principal dengue-carrying vector. The Aedes aegypti mosquitoes as a vector of dengue virus normally live and breed in clean water reservoirs that are not directly related to the land such as: bath, bird drinks, water pot, water jars / barrel, cans, old tires, etc. In Indonesia, dengue outbreaks often occur when the seasons change from dry to rain hor vice versa. This study aimed to figure out the influence of natural environment and the existence of the vector’s larva. A logistic regression was performed to ascertain the effects of temperature, humidity, water replacement and the existence of water reservoir on the likelihood of the existence of the vector’s larva . The logistic regression model was statistically significant, p < .005 and the model explained 69% (Nagelkerke R2). This finding shows that the existence of the mosquito’s larva, influenced by temperature, water replacement activity and the existence of water reservoir. Health education about vector control and environmental engineering are necessary to break the chain of mosquito breeding.


2013 ◽  
Vol 46 (2) ◽  
pp. 221-222 ◽  
Author(s):  
Regina Maria Pinto de Figueiredo ◽  
Maria Paula Gomes Mourão ◽  
Yasmin Emile Conte Abi-Abib ◽  
Cintia Mara de Oliveira ◽  
Rosemary Roque ◽  
...  

2019 ◽  
Vol 56 (4) ◽  
pp. 1102-1111 ◽  
Author(s):  
Kyran M Staunton ◽  
Peter Yeeles ◽  
Michael Townsend ◽  
Somayeh Nowrouzi ◽  
Christopher J Paton ◽  
...  

AbstractAs the incidence of arboviral diseases such as dengue, Zika, chikungunya, and yellow fever increases globally, controlling their primary vector, Aedes aegypti (L.) (Diptera: Culicidae), is of greater importance than ever before. Mosquito control programs rely heavily on effective adult surveillance to ensure methodological efficacy. The Biogents Sentinel (BGS) trap is the gold standard for surveilling adult Aedes mosquitoes and is commonly deployed worldwide, including during modern ‘rear and release’ programs. Despite its extensive use, few studies have directly assessed environmental characteristics that affect BGS trap catches, let alone how these influences change during ‘rear and release’ programs. We assessed male and female Ae. aegypti spatial stability, as well as premises condition and trap location influences on BGS trap catches, as part of Debug Innisfail ‘rear and release’ program in northern Australia. We found similar trends in spatial stability of male and female mosquitoes at both weekly and monthly resolutions. From surveillance in locations where no males were released, reduced catches were found at premises that contained somewhat damaged houses and unscreened properties. In addition, when traps were located in areas that were unsheltered, more than 10 m from commonly used sitting areas or more visually complex catches were also negatively affected. In locations where males were released, we found that traps in treatment sites, relative to control sites, displayed increased catches in heavily shaded premises and were inconsistently influenced by differences in house sets and building materials. Such findings have valuable implications for a range of Ae. aegypti surveillance programs.


2019 ◽  
Vol 56 (4) ◽  
pp. 1078-1086 ◽  
Author(s):  
Nancy M Endersby-Harshman ◽  
Jason K Axford ◽  
Ary A Hoffmann

Abstract Wolbachia-infected Aedes aegypti (L.) mosquitoes for control of dengue transmission are being released experimentally in tropical regions of Australia, south-east Asia, and South America. To become established, the Wolbachia Hertig (Rickettsiales: Rickettsiaceae) strains used must induce expression of cytoplasmic incompatibility (CI) in matings between infected males and uninfected females so that infected females have a reproductive advantage, which will drive the infection through field populations. Wolbachia is a Rickettsia-like alphaproteobacterium which can be affected by tetracycline antibiotics. We investigated whether exposure of Wolbachia-infected mosquitoes to chlortetracycline at environmentally relevant levels during their aquatic development resulted in loss or reduction of infection in three strains, wAlbB, wMel, and wMelPop. Wolbachia density was reduced for all three strains at the tested chlortetracycline concentrations of 5 and 50 µg/liter. Two of the strains, wMel and wMelPop, showed a breakdown in CI. The wAlbB strain maintained CI and may be useful at breeding sites where tetracycline contamination has occurred. This may include drier regions where Ae. aegypti can utilize subterranean water sources and septic tanks as breeding sites.


Sign in / Sign up

Export Citation Format

Share Document