scholarly journals Barriers to Effective Tick Management and Tick-Bite Prevention in the United States (Acari: Ixodidae)

Author(s):  
Lars Eisen ◽  
Kirby C Stafford

Abstract Lyme and other tick-borne diseases are increasing in the United States. Development of tick control tools have focused primarily on the blacklegged tick, Ixodes scapularis Say. Application of acaricides or entomopathogenic fungal agents to kill host-seeking ticks or ticks on rodents can suppress I. scapularis abundance in residential landscapes, but evidence is lacking for impact on human tick bites or tick-borne disease. Similar studies remain limited for the lone star tick, Amblyomma americanum (L.). Other knowledge gaps include how well homeowners and pest control companies perform in the broadcast application of tick-killing products, relative to high efficacy reported in research studies, and the tick-killing potential of natural product formulations exempt from Environmental Protection Agency registration. Area-wide control based on preventing ticks from feeding on their main reproductive host, the white-tailed deer, can suppress populations of both I. scapularis and A. americanum. Some studies also suggest an impact on Lyme disease cases, but this needs to be further validated in larger-scale intervention studies. The effectiveness, scale, cost, and implementation of various tick management strategies are important considerations in efforts to reduce human tick encounters and tick-borne disease. Additional barriers include weak incentives for industry and academia to develop, test, and register new tick and pathogen control technologies, including vaccines targeting humans, tick reproductive hosts, or wildlife pathogen reservoirs. Solutions will need to be ‘two-pronged’: improving the tick and pathogen control toolbox and strengthening the public health workforce engaging in tick control at local and state levels.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kristen L. Knapp ◽  
Nancy A. Rice

Borrelia burgdorferi, the causative agent of Lyme disease, andBabesia microti, a causative agent of babesiosis, are increasingly implicated in the growing tick-borne disease burden in the northeastern United States. These pathogens are transmitted via the bite of an infected tick vector,Ixodes scapularis, which is capable of harboring and inoculating a host with multiple pathogens simultaneously. Clinical presentation of the diseases is heterogeneous and ranges from mild flu-like symptoms to near-fatal cardiac arrhythmias. While the reason for the variability is not known, the possibility exists that concomitant infection with bothB. burgdorferiandB. microtimay synergistically increase disease severity. In an effort to clarify the current state of understanding regarding coinfection withB. burgdorferiandB. microti, in this review, we discuss the geographical distribution and pathogenesis of Lyme disease and babesiosis in the United States, the immunological response of humans toB. burgdorferiorB. microtiinfection, the existing knowledge regarding coinfection disease pathology, and critical factors that have led to ambiguity in the literature regarding coinfection, in order to eliminate confusion in future experimental design and investigation.


Author(s):  
Gebbiena M Bron ◽  
Xia Lee ◽  
Susan M Paskewitz

Abstract Lyme disease is the most common vector-borne disease in the United States with hotspots in the Northeast and Midwest. Integrated vector control for mosquito-borne disease prevention is often organized at the community level, but tick control is primarily coordinated at the household and individual level. Management of the blacklegged tick, Ixodes scapularis (Say), the vector of the causative agent of Lyme disease in the Midwest and eastern United States in peridomestic environments may be critical as many tick encounters are reported to occur in the yard. Therefore, we assessed the effectiveness of a widely available and low-cost pesticide that targets common lawn pests and is labeled for use against ticks. In June 2019, we evaluated a granular form of gamma-cyhalothrin in a placebo-controlled residential backyard study (n = 90) in two communities in Wisconsin. The product applied by the research team reduced nymphal blacklegged ticks in plots established in the lawn part of the ecotone by 97% one week after application at both communities and by 89–97% three to four weeks postapplication. The proportion of homes with at least one nymphal tick postapplication was significantly lower at acaricide-treated homes and ranged from 4.2 to 29.2% compared with placebo homes where at least one nymphal tick was found at 50–81.5% of homes. These results support the efficacy of a low-cost do-it-yourself strategy for homeowners seeking to reduce blacklegged ticks in the yard.


Author(s):  
Daniel C Mathisson ◽  
Sara M Kross ◽  
Matthew I Palmer ◽  
Maria A Diuk-Wasser

Abstract Tick-borne illnesses have been on the rise in the United States, with reported cases up sharply in the past two decades. In this literature review, we synthesize the available research on the relationship between vegetation and tick abundance for four tick species in the northeastern United States that are of potential medical importance to humans. The blacklegged tick (Ixodes scapularis) (Say; Acari: Ixodidae) is found to be positively associated with closed canopy forests and dense vegetation thickets, and negatively associated with open canopy environments, such as grasslands or old agricultural fields. The American dog tick (Dermacentor variabilis) (Say; Acari: Ixodidae) has little habitat overlap with I. scapularis, with abundance highest in grasses and open-canopy fields. The lone star tick (Amblyomma americanum) (Linnaeus; Acari: Ixodidae) is a habitat generalist without consistent associations with particular types of vegetation. The habitat associations of the recently introduced Asian longhorned tick (Haemaphysalis longicornis) (Neumann; Acari: Ixodidae) in the northeastern United States, and in other regions where it has invaded, are still unknown, although based on studies in its native range, it is likely to be found in grasslands and open-canopy habitats.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Erika T Machtinger ◽  
Scott C Williams

Abstract Arthropods pests are most frequently associated with both plants and vertebrate animals. Ticks, in particular the blacklegged ticks Ixodes scapularis Say and Ixodes pacificus Cooley & Kohls (Acari: Ixodidae), are associated with wildlife hosts and are the primary vectors of Lyme disease, the most frequently reported vector-borne disease in the United States. Immature blacklegged ticks in the eastern United States frequently use small mammals from the genus Peromyscus as hosts. These mice are competent reservoirs for Borrelia burgdorferi, the causative agent of Lyme disease, as well as other tick-borne pathogens. To conduct surveillance on immature ticks and pathogen circulation in hosts, capture and handling of these small mammals is required. While protocols for rearing and pest surveillance on plants are common, there are very few protocols aimed at entomologists to conduct research on vertebrate–arthropod relationships. The goal of this manuscript is to provide a practical template for trapping Peromyscus spp. for vector and vector-borne pathogen surveillance and ecology for professionals that may not have a background in wildlife research. Important considerations are highlighted when targeting P. leucopus Rafinesque and P. maniculatus Wagner. Specifically, for tick and tick-borne disease-related projects, materials that may be required are suggested and references and other resources for researchers beginning a trapping study are provided.


2020 ◽  
Vol 57 (5) ◽  
pp. 1532-1538
Author(s):  
Cedar Mitchell ◽  
Megan Dyer ◽  
Feng-Chang Lin ◽  
Natalie Bowman ◽  
Thomas Mather ◽  
...  

Abstract Tick-borne diseases are a growing threat to public health in the United States, especially among outdoor workers who experience high occupational exposure to ticks. Long-lasting permethrin-impregnated clothing has demonstrated high initial protection against bites from blacklegged ticks, Ixodes scapularis Say (Acari: Ixodidae), in laboratory settings, and sustained protection against bites from the lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae), in field tests. However, long-lasting permethrin impregnation of clothing has not been field tested among outdoor workers who are frequently exposed to blacklegged ticks. We conducted a 2-yr randomized, placebo-controlled, double-blinded trial among 82 outdoor workers in Rhode Island and southern Massachusetts. Participants in the treatment arm wore factory-impregnated permethrin clothing, and the control group wore sham-treated clothing. Outdoor working hours, tick encounters, and bites were recorded weekly to assess protective effectiveness of long-lasting permethrin-impregnated garments. Factory-impregnated clothing significantly reduced tick bites by 65% in the first study year and by 50% in the second year for a 2-yr protective effect of 58%. No significant difference in other tick bite prevention method utilization occurred between treatment and control groups, and no treatment-related adverse outcomes were reported. Factory permethrin impregnation of clothing is safe and effective for the prevention of tick bites among outdoor workers whose primary exposure is to blacklegged ticks in the northeastern United States.


Author(s):  
Robyn M Nadolny ◽  
Ashley C Kennedy ◽  
James M Rodgers ◽  
Zachary T Vincent ◽  
Hannah Cornman ◽  
...  

Abstract During September–December 2018, 25 live ticks were collected on-post at Fort Leavenworth, Kansas, in a home with a history of bat occupancy. Nine ticks were sent to the Army Public Health Center Tick-Borne Disease Laboratory and were identified as Carios kelleyi (Cooley and Kohls, 1941), a species that seldom bites humans but that may search for other sources of blood meals, including humans, when bats are removed from human dwellings. The ticks were tested for numerous agents of human disease. Rickettsia lusitaniae was identified by multilocus sequence typing to be present in two ticks, marking the first detection of this Rickettsia agent in the United States and in this species of tick. Two other Rickettsia spp. were also detected, including an endosymbiont previously associated with C. kelleyi and a possible novel Rickettsia species. The potential roles of C. kelleyi and bats in peridomestic Rickettsia transmission cycles warrant further investigation.


Author(s):  
Terry L Schulze ◽  
Robert A Jordan

Abstract We compared the ability of product formulations representing a synthetic pyrethroid acaricide (Talstar P Professional Insecticide), a natural product-based acaricide (Essentria IC3), and an entomopathogenic fungal acaricide (Met52 EC Bioinsecticide) to suppress Ixodes scapularis Say and Amblyomma americanum (L.) nymphs when applied following USEPA approved manufacturers’ label recommendations for tick control using hand-pumped knapsack sprayers before the beginning of their seasonal activity period in the spring. We applied Met52 EC Bioinsecticide (11% Metarhizium anisopliae Strain F52) to five 100 m2 plots (10.6 ml AI/plot) in mid-April 2020. Two weeks later at the end of April 2020, we treated an additional five 100 m2 plots each with either Talstar P Professional Insecticide (7.9% bifenthrin @ 2.5 ml AI/plot) or Essentria IC3 (10% rosemary oil, 5% geraniol, and 2% peppermint oil @ 86.6 ml AI/plot). Weekly sampling of all plots through the end of June 2020 showed that both Met52 EC Bioinsecticide and Essentria IC3 failed to maintain a 90% suppression threshold for I. scapularis, compared to control plots, and required two additional applications over the course of the trial. In contrast, Talstar P Professional Insecticide suppressed 100% of I. scapularis nymphs and ≥96 and 100% of A. americanum nymphs and adults, respectively. Such pre-season applications of synthetic pyrethroids significantly reduce the early season acarological risk for exposure to host-seeking ticks as well as the frequency of acaricide applications.


2021 ◽  
pp. 003335492110557
Author(s):  
Karen L. Niemchick ◽  
Ally Goerge ◽  
Amy H. Ponte

Objective With the completion of the Human Genome Project and swift development of genomic technologies, public health practitioners can use these advancements to more precisely target disease interventions to populations at risk. To integrate these innovations into better health outcomes, public health professionals need to have at least a basic understanding of genomics within various disciplines of public health. This descriptive study focused on the current level of genomics content in accredited master of public health (MPH) programs in the United States. Methods We conducted an internet search on all 171 Council on Education for Public Health (CEPH)–accredited MPH programs in the United States for genomics content in required and elective courses using the search terms “genetics,” “genomics,” and “molecular.” Results Of the 171 CEPH-accredited MPH programs examined, 52 (30.4%) schools and programs in 34 states offered some type of genomics education. Thirty-five (20.5%) schools and programs had a course in genetic epidemiology, 29 (16.9%) had a course in genetic biostatistics or bioinformatics, and 17 (9.9%) had a course in general public health genomics. The remaining 119 offered no course with a focus on genetics or genomics. In addition, some electives or specifically focused courses related to genomics were offered. Conclusion We found inadequate training in public health genomics for MPH students. To realize the promise of precision public health and to increase the understanding of genomics among the public health workforce, MPH programs need to find ways to integrate genomics education into their curricula.


Author(s):  
Marharyta Chepeliuk

The pandemic has enhanced the social function of digital technologies and services. It is solely through digital technology that a massive shift to remote work has been possible during the most difficult period of the pandemic. All over the world, the philosophy of office work is changing, and there is a transition to permanent and conditional-permanent remote work. For example, Transport Canada is planning to move to telecommuting as a key employment model for its employees. In the near future, telecommuting will continue for most of the 6,000 employees in the agency. In China, widespread use of WeChat, Tencent, and Ding digital working applications began in late January 2020, when isolation measures were introduced. In Switzerland, COOVID-19 Remote Work and Study Resources provides free resources for remote operation and distance learning. Zoom and Google Meet videoconferencing, remote workplaces, and new social platforms run remote work almost immediately, and this trend is likely to continue after the lifting of the quarantine. Trends in staff employment worldwide are rather mixed. According to LinkedIn, it is possible to track changes in the employment rates of seven key economies – Australia, China, France, Italy, Singapore, Great Britain and United States. In France and Italy, the decline was more pronounced at -70% and -64.5% respectively by mid-April 2020. Since then, employment has been gradually recovering, and most of the seven key economies for which these figures have been analysed tend to change by 0 per cent year on year. By July 1, 2020, China, France, and the United States had seen the largest rebound in relative recruitment – -6% or -7%. At the end of September 2020, the countries with a high recovery in employment were China (22 per cent), Brazil (13 per cent), Singapore (8 per cent) and France (5 per cent). In these economies, hiring so far seems to compensate for months in which no new personnel have been recruited, indicating some stabilization of the labor market.


Sign in / Sign up

Export Citation Format

Share Document