scholarly journals Engineered T Cells Improve Pancreatic Cancer Outcomes in Mice

2016 ◽  
Vol 108 (8) ◽  
pp. djw193
Author(s):  
Mike Fillon
2019 ◽  
Author(s):  
Philip D. Greenberg ◽  
Kristin G. Anderson ◽  
Dan Egan ◽  
Sunil R. Hingorani ◽  
Luigi Nezi ◽  
...  

2020 ◽  
Vol 20 ◽  
Author(s):  
Suman K Ray ◽  
Yamini Meshram ◽  
Sukhes Mukherjee

: Cancer immunotherapy endeavours in harnessing delicate strength and specificity of immune system for therapy of different malignancies including colorectal carcinoma. The recent challenge for cancer immunotherapy is to practice and develop molecular immunology tools to create tactics that efficiently and securely boost antitumor reactions. After several attempts of deceptive outcomes, the wave has lastly altered and immunotherapy has become a clinically confirmed treatment for several cancers. Immunotherapeutic methods include administration of antibodies or modified proteins that either block cellular activity or co-stimulate cells through immune control pathways, cancer vaccines, oncolytic bacteria, ex vivo activated adoptive transfer of T cells and natural killer cells. Engineered T cells are used to produce a chimeric antigen receptor (CAR) to treat different malignancies including colorectal carcinoma in a recent decade. Despite considerable early clinical success, CAR-T therapies are associated with some side effects and sometimes display minimal efficacy. It gives special emphasis on the latest clinical evidence with CAR-T technology and also other related immunotherapeutic methods with promising performance, and highlighted how this therapy can affect therapeutic outcome and next upsurge as a key clinical aspect of colorectal carcinoma. In this review we recapitulate the current developments produced to improve the efficacy and specificity of CAR-T therapies in colon cancer.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jing-Zhou Hou ◽  
Jing Christine Ye ◽  
Jeffrey J. Pu ◽  
Hongtao Liu ◽  
Wei Ding ◽  
...  

AbstractAntibodies and chimeric antigen receptor-engineered T cells (CAR-T) are increasingly used for cancer immunotherapy. Small molecule inhibitors targeting cellular oncoproteins and enzymes such as BCR-ABL, JAK2, Bruton tyrosine kinase, FLT3, BCL-2, IDH1, IDH2, are biomarker-driven chemotherapy-free agents approved for several major hematological malignancies. LOXO-305, asciminib, “off-the-shelf” universal CAR-T cells and BCMA-directed immunotherapeutics as well as data from clinical trials on many novel agents and regimens were updated at the 2020 American Society of Hematology (ASH) Annual Meeting. Major developments and updates for the therapy of hematological malignancies were delineated at the recent Winter Symposium and New York Oncology Forum from the Chinese American Hematologist and Oncologist Network (CAHON.org). This study summarized the latest updates on novel agents and regimens for hematological malignancies from the 2020 ASH annual meeting.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A480-A480
Author(s):  
Jonas Van Audenaerde ◽  
Elly Marcq ◽  
Bianca von Scheidt ◽  
Ashleigh Davey ◽  
Amanda Oliver ◽  
...  

BackgroundWith the poorest 5-year survival of all cancers, improving treatment for pancreatic cancer is one of the biggest challenges in cancer research. In this era of combination immunotherapies, we sought to explore the potential of combining both priming and activation of the immune system. To achieve this, we combined a CD40 agonist with interleukin-15 and tested its potential in pancreatic cancer.MethodsTwo different mouse models of pancreatic cancer were used to assess the potential of this combination regimen. Therefore, effects on tumour growth kinetics and survival were charted. Differential effects on immune signatures was investigated using RNA sequencing. Functional immune subset involvement was tested using different immune depletion experiments and multicolour flow cytometry in different relevant immune sites. Immune memory was checked using re-challenge experiments.ResultsWe demonstrated profound reduction in tumour growth and increased survival of mice with the majority of mice being cured when both agents were combined, including an unprecedented dose reduction of CD40 agonist without losing any efficacy (fig 1). RNA sequencing analysis showed involvement of natural killer cell and T cell mediated anti-tumour responses and the importance of antigen-presenting cell pathways. This combination resulted in enhanced infiltration of tumours by both cytotoxic T cells and natural killer cells, as well as a striking increase in the ratio of CD8+ T cells over T regulatory cells. We also observed a significant increase in numbers of dendritic cells in tumour draining lymph nodes, particularly CD103+ dendritic cells with cross-presentation potential. A critical role for CD8+ T cells and involvement of natural killer cells in the anti-tumour effect was highlighted. Importantly, strong immune memory was established, with an increase in memory CD8+ T cells only when both interleukin-15 and the CD40 agonist were combined.Abstract 453 Figure 1Tumour kinetics and survival in Panc02 (left) and KPC (right) pancreatic cancer mouse modelsConclusionsWe demonstrated profound synergistic anti-tumour effects upon combination of CD40 agonist and interleukin-15 treatment in mouse models of pancreatic cancer. This preclinical data supports initiation of a first-in-human clinical trial with this combination immunotherapy strategy in pancreatic cancer.


2021 ◽  
Vol 9 (7) ◽  
pp. e003019
Author(s):  
Robert H Vonderheide ◽  
Kimberly A Kraynyak ◽  
Anthony F Shields ◽  
Autumn J McRee ◽  
Jennifer M Johnson ◽  
...  

BackgroundHuman telomerase reverse transcriptase (hTERT) is frequently classified as a ‘universal’ tumor associated antigen due to its expression in a vast number of cancers. We evaluated plasmid DNA-encoded hTERT as an immunotherapy across nine cancer types.MethodsA phase 1 clinical trial was conducted in adult patients with no evidence of disease following definitive surgery and standard therapy, who were at high risk of relapse. Plasmid DNA encoding one of two hTERT variants (INO-1400 or INO-1401) with or without plasmid DNA encoding interleukin 12 (IL-12) (INO-9012) was delivered intramuscularly concurrent with the application of the CELLECTRA constant-current electroporation device 4 times across 12 weeks. Safety assessments and immune monitoring against native (germline, non-mutated, non-plasmid matched) hTERT antigen were performed. The largest cohort of patients enrolled had pancreatic cancer, allowing for additional targeted assessments for this tumor type.ResultsOf the 93 enrolled patients who received at least one dose, 88 had at least one adverse event; the majority were grade 1 or 2, related to injection site. At 18 months, 54.8% (51/93) patients were disease-free, with median disease-free survival (DFS) not reached by end of study. For patients with pancreatic cancer, the median DFS was 9 months, with 41.4% of these patients remaining disease-free at 18 months. hTERT immunotherapy induced a de novo cellular immune response or enhanced pre-existing cellular responses to native hTERT in 96% (88/92) of patients with various cancer types. Treatment with INO-1400/INO-1401±INO-9012 drove hTERT-specific IFN-γ production, generated hTERT-specific CD4+ and CD8+ T cells expressing the activation marker CD38, and induced hTERT-specific activated CD8 +CTLs as defined by cells expressing perforin and granzymes. The addition of plasmid IL-12 adjuvant elicited higher magnitudes of cellular responses including IFN-γ production, activated CD4+ and CD8+ T cells, and activated CD8+CTLs. In a subset analysis of pancreatic cancer patients, the presence of immunotherapy-induced activated CD8+ T cells expressing PD-1, granzymes and perforin correlated with survival.ConclusionsPlasmid DNA-encoded hTERT/IL-12 DNA immunotherapy was well-tolerated, immune responses were noted across all tumor types, and a specific CD8+ phenotype increased by the immunotherapy was significantly correlated with survival in patients with pancreatic cancer.


Blood ◽  
2013 ◽  
Vol 122 (8) ◽  
pp. 1399-1410 ◽  
Author(s):  
Daniel Abate-Daga ◽  
Ken-ichi Hanada ◽  
Jeremy L. Davis ◽  
James C. Yang ◽  
Steven A. Rosenberg ◽  
...  

Key Points Gene expression in TCR-engineered cells resembles that of virus-reactive cells more than native tumor antigen-reactive cells. Persisting TCR gene–engineered T cells are sensitive to PD-L1–PD-1 interaction but CD160-associated impairment is ligand-independent.


Sign in / Sign up

Export Citation Format

Share Document