scholarly journals Novel agents and regimens for hematological malignancies: recent updates from 2020 ASH annual meeting

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jing-Zhou Hou ◽  
Jing Christine Ye ◽  
Jeffrey J. Pu ◽  
Hongtao Liu ◽  
Wei Ding ◽  
...  

AbstractAntibodies and chimeric antigen receptor-engineered T cells (CAR-T) are increasingly used for cancer immunotherapy. Small molecule inhibitors targeting cellular oncoproteins and enzymes such as BCR-ABL, JAK2, Bruton tyrosine kinase, FLT3, BCL-2, IDH1, IDH2, are biomarker-driven chemotherapy-free agents approved for several major hematological malignancies. LOXO-305, asciminib, “off-the-shelf” universal CAR-T cells and BCMA-directed immunotherapeutics as well as data from clinical trials on many novel agents and regimens were updated at the 2020 American Society of Hematology (ASH) Annual Meeting. Major developments and updates for the therapy of hematological malignancies were delineated at the recent Winter Symposium and New York Oncology Forum from the Chinese American Hematologist and Oncologist Network (CAHON.org). This study summarized the latest updates on novel agents and regimens for hematological malignancies from the 2020 ASH annual meeting.

2017 ◽  
Vol 52 (3) ◽  
pp. 268-276 ◽  
Author(s):  
Troy Z. Horvat ◽  
Amanda N. Seddon ◽  
Adebayo Ogunniyi ◽  
Amber C. King ◽  
Larry W. Buie ◽  
...  

Objective: To review the pharmacology, efficacy, and safety of Food and Drug Administration approved and promising immunotherapy agents used in the treatment of acute lymphoblastic leukemia (ALL). Data Sources: A literature search was performed of PubMed and MEDLINE databases (1950 to July 2017) and of abstracts from the American Society of Hematology and the American Society of Clinical Oncology. Searches were performed utilizing the following key terms: rituximab, blinatumomab, inotuzumab, ofatumumab, obinutuzumab, Blincyto, Rituxan, Gazyva, Arzerra, CAR T-cell, and chimeric antigen receptor (CAR). Study Selection/Data Extraction: Studies of pharmacology, clinical efficacy, and safety of rituximab, ofatumumab, obinutuzumab, inotuzumab, blinatumomab, and CAR T-cells in the treatment of adult patients with ALL were identified. Data Synthesis: Conventional chemotherapy has been the mainstay in the treatment of ALL, producing cure rates of approximately 90% in pediatrics, but it remains suboptimal in adult patients. As such, more effective consolidative modalities and novel therapies for relapsed/refractory disease are needed for adult patients with ALL. In recent years, anti-CD20 antibodies, blinatumomab, inotuzumab, and CD19-targeted CAR T-cells have drastically changed the treatment landscape of B-cell ALL. Conclusion: Outcomes of patients with relapsed disease are improving thanks to new therapies such as blinatumomab, inotuzumab, and CAR T-cells. Although the efficacy of these therapies is impressive, they are not without toxicity, both physical and financial. The optimal sequencing of these therapies still remains a question.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chunyi Shen ◽  
Zhen Zhang ◽  
Yi Zhang

Immunotherapy, especially based on chimeric antigen receptor (CAR) T cells, has achieved prominent success in the treatment of hematological malignancies. However, approximately 30-50% of patients will have disease relapse following remission after receiving CD19-targeting CAR-T cells, with failure of maintaining a long-term effect. Mechanisms underlying CAR-T therapy inefficiency consist of loss or modulation of target antigen and CAR-T cell poor persistence which mostly results from T cell exhaustion. The unique features and restoration strategies of exhausted T cells (Tex) have been well described in solid tumors. However, the overview associated with CAR-T cell exhaustion is relatively rare in hematological malignancies. In this review, we summarize the characteristics, cellular, and molecular mechanisms of Tex cells as well as approaches to reverse CAR-T cell exhaustion in hematological malignancies, providing novel strategies for immunotherapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sergei Smirnov ◽  
Alexey Petukhov ◽  
Ksenia Levchuk ◽  
Sergey Kulemzin ◽  
Alena Staliarova ◽  
...  

Despite the outstanding results of treatment using autologous chimeric antigen receptor T cells (CAR-T cells) in hematological malignancies, this approach is endowed with several constraints. In particular, profound lymphopenia in some patients and the inability to manufacture products with predefined properties or set of cryopreserved batches of cells directed to different antigens in advance. Allogeneic CAR-T cells have the potential to address these issues but they can cause life-threatening graft-versus-host disease or have shorter persistence due to elimination by the host immune system. Novel strategies to create an “off the shelf” allogeneic product that would circumvent these limitations are an extensive area of research. Here we review CAR-T cell products pioneering an allogeneic approach in clinical trials.


2020 ◽  
Author(s):  
Qibin Liao ◽  
Yunyu Mao ◽  
Huan He ◽  
Xiangqing Ding ◽  
Xiaoyan Zhang ◽  
...  

Abstract Background: On-target off-tumor toxicity impedes the clinical application of chimeric antigen receptor-modified T cells (CAR-T cells) in the treatment of solid tumors. The combinatorial antigen recognition strategy can improve the therapeutic safety of CAR-T cells by targeting two different tumor-associated antigens (TAAs) using a CAR and a chimeric costimulatory receptor (CCR). Although programmed death-ligand 1 (PD-L1, also known as B7-H1) is expressed on multiple tumors, the potential of PD-L1 as a universal target for designing CCR remains unknown.Methods: A first-generation CD19 or HER2 CAR and a PD-L1 CCR containing the CD28 signaling domain were constructed and delivered into Jurkat T cells or primary T cells by a pseudotyped lentivirus. The release of cytokines, including IL-2, IFN-γ and TNF-α, was quantified using enzyme-linked immunosorbent assay (ELISA) kits or a cytometric bead array (CBA). The in vitro cytotoxicity of CAR-T cells was detected with a luciferase-based killing assay. The in vitro proliferation of CAR-T cells was assessed by flow cytometry. The therapeutic safety and efficacy of CAR-T cells was evaluated using a subcutaneous dual-tumor model in vivo.Results: Jurkat T cells or primary T cells expressing both the CD19/HER2 CAR and PD-L1 CCR produced higher levels of cytokines in the presence of CD19/HER2 and PD-L1 than in the presence of HER2/CD19. Compared to HER2-z-engineered T cells, HER2-z-PD-L1-28-engineered T cells had higher in vitro cytotoxicity potential against PD-L1-positive tumor cells. CD19/HER2-z-PD-L1-28-engineered T cells showed higher proliferation potential in the presence of CD19/HER2 and PD-L1 than in the absence of PD-L1. CD19/HER2-z-PD-L1-28-engineered T cells preferably destroyed xenograft tumors expressing CD19/HER2 and PD-L1 in vivo and did not significantly affect CD19/HER2-expressing tumors. The PD-L1 CCR improved the antitumor efficacy of low-affinity HER2 CAR-T cells against PD-L1-positive tumors expressing high levels of HER2.Conclusion: Our findings confirmed that PD-L1 can be used as a universal target antigen for designing CCR, improving the efficacy of CAR-T cells in the treatment of PD-L1-positive solid tumors but reducing toxicity within PD-L1-negative normal tissues expressing low levels of TAA in vivo.


Author(s):  
Jonathan P Mochel ◽  
Stephen C Ekker ◽  
Chad M Johannes ◽  
Albert E Jergens ◽  
Karin Allenspach ◽  
...  

The advent of the genome editing era brings forth the promise of adoptive cell transfer using engineered chimeric antigen receptor (CAR) T-cells for targeted cancer therapy. CAR T-cell immunotherapy is probably one of the most encouraging developments for the treatment of hematological malignancies. In 2017, two CAR T-cell therapies were approved by the U. S Food and Drug Administration; one for the treatment of pediatric Acute Lymphoblastic Leukemia (ALL), the other for adult patients with advanced lymphomas. However, despite significant progress in the area, CAR T-cell therapy is still in its early days and faces significant challenges, including the complexity and costs associated with the technology. B-cell lymphoma is the most common hematopoietic cancer in dogs, with an incidence approaching 0.1% and a total of 20-100 cases per 100,000 individuals. It is a widely accepted naturally occurring model for human non-Hodgkin’s lymphoma. Current treatment is with combination chemotherapy protocols, which prolong life for less than a year in canines and are associated with severe dose-limiting side effects, such as gastrointestinal and bone marrow toxicity. To date, one canine study generated CAR T-cells by transfection of mRNA for CAR domain expression. While this was shown to provide a transient anti-tumor activity, results were modest, indicating that stable, genomic integration of CAR modules is required in order to achieve lasting therapeutic benefit. This Commentary summarizes the current state of knowledge on CAR T-cell immunotherapy in human medicine and its potential applications in animal health, while discussing the potential of the canine model as a translational system for immuno-oncology research.


2021 ◽  
Author(s):  
Rosa L Vincent ◽  
Candice Gurbatri ◽  
Andrew Redenti ◽  
Courtney Coker ◽  
Nicholas Arpaia ◽  
...  

Synthetic biology enables the engineering of interactions between living medicines to overcome the specific limitations of any singular therapy. One major challenge of tumor-antigen targeting therapies like chimeric antigen receptor (CAR)-T cells is the identification of targetable antigens that are specifically and uniformly expressed on heterogenous solid tumors. In contrast, certain species of bacteria selectively colonize immune-privileged tumor cores and can be readily engineered as antigen-independent platforms for therapeutic delivery. Bridging these approaches, we develop a platform of probiotic-guided CAR-T cells (ProCARs), in which T cells are engineered to sense synthetic antigens (SA) that are produced and released by tumor-colonizing probiotic bacteria. We demonstrate increased CAR-T cell activation and tumor-cell lysis when SAs anchor to components of the extracellular matrix. Moreover, we show that ProCARs are intratumorally activated by probiotically-delivered SAs, receive further stimulation from bacterial TLR agonists, and are safe and effective in multiple xenograft models. This approach repurposes tumor-colonizing bacteria as beacons that guide the activity of engineered T cells, and in turn builds the foundation for communities of living medicines.


Angiogenesis ◽  
2019 ◽  
Vol 22 (4) ◽  
pp. 473-475 ◽  
Author(s):  
Parvin Akbari ◽  
Elisabeth J. M. Huijbers ◽  
Maria Themeli ◽  
Arjan W. Griffioen ◽  
Judy R. van Beijnum

Abstract T cells armed with a chimeric antigen receptor, CAR T cells, have shown extraordinary activity against certain B lymphocyte malignancies, when targeted towards the CD19 B cell surface marker. These results have led to the regulatory approval of two CAR T cell approaches. Translation of this result to the solid tumor setting has been problematic until now. A number of differences between liquid and solid tumors are likely to cause this discrepancy. The main ones of these are undoubtedly the uncomplicated availability of the target cell within the blood compartment and the abundant expression of the target molecule on the cancerous cells in the case of hematological malignancies. Targets expressed by solid tumor cells are hard to engage due to the non-adhesive and abnormal vasculature, while conditions in the tumor microenvironment can be extremely immunosuppressive. Targets in the tumor vasculature are readily reachable by CAR T cells and reside outside the immunosuppressive tumor microenvironment. It is therefore hypothesized that targeting CAR T cells towards the tumor vasculature of solid tumors may share the excellent effects of CAR T cell therapy with that against hematological malignancies. A few reports have shown promising results. Suggestions are provided for further improvement.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Quande Lin ◽  
Juanjuan Zhao ◽  
Yongping Song ◽  
Delong Liu

Abstract Proteasome inhibitors, immunomodulatory agents and monoclonal antibodies have dramatically changed the natural history of multiple myeloma (MM). However, most patients eventually suffer a relapse and succumb to the disease. Chimeric antigen receptor (CAR) engineered T cells targeting B cell maturation antigen (BCMA), CD138, CS1 glycoprotein antigen (SLAMF7) and light chains are in active development for therapy of refractory /relapsed (RR) MM. CD19- targeted CAR T cells in conjunction with autologous stem cell transplantation also showed activity in RRMM. Dual- target CAR T cells are in clinical trials for RRMM. This review summarized the recent updates of ongoing CAR T clinical trials for multiple myeloma.


Author(s):  
Melanie Schwerdtfeger ◽  
Mohamed-Reda Benmebarek ◽  
Stefan Endres ◽  
Marion Subklewe ◽  
Vincenzo Desiderio ◽  
...  

Abstract Purpose of Review Both chimeric antigen receptor (CAR) T cells and T cell–engaging antibodies (BiAb) have been approved for the treatment of hematological malignancies. However, despite targeting the same antigen, they represent very different classes of therapeutics, each with its distinct advantages and drawbacks. In this review, we compare BiAb and CAR T cells with regard to their mechanism of action, manufacturing, and clinical application. In addition, we present novel strategies to overcome limitations of either approach and to combine the best of both worlds. Recent Findings By now there are multiple approaches combining the advantages of BiAb and CAR T cells. A major area of research is the application of both formats for solid tumor entities. This includes improving the infiltration of T cells into the tumor, counteracting immunosuppression in the tumor microenvironment, targeting antigen heterogeneity, and limiting off-tumor on-target effects. Summary BiAb come with the major advantage of being an off-the-shelf product and are more controllable because of their half-life. They have also been reported to induce less frequent and less severe adverse events. CAR T cells in turn demonstrate superior response rates, have the potential for long-term persistence, and can be additionally genetically modified to overcome some of their limitations, e.g., to make them more controllable.


Sign in / Sign up

Export Citation Format

Share Document