Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice

2020 ◽  
Vol 71 (16) ◽  
pp. 4944-4957 ◽  
Author(s):  
Shahnaz Perveen ◽  
Mingnan Qu ◽  
Faming Chen ◽  
Jemaa Essemine ◽  
Naveed Khan ◽  
...  

Abstract Identifying new options to improve photosynthetic capacity is a major approach to improve crop yield potential. Here we report that overexpression of the gene encoding the transcription factor mEmBP-1 led to simultaneously increased expression of many genes in photosynthesis, including genes encoding Chl a,b-binding proteins (Lhca and Lhcb), PSII (PsbR3 and PsbW) and PSI reaction center subunits (PsaK and PsaN), chloroplast ATP synthase subunit, electron transport reaction components (Fd1 and PC), and also major genes in the Calvin–Benson–Bassham cycle, including those encoding Rubisco, glyceraldehyde phosphate dehydrogenase, fructose bisphosphate aldolase, transketolase, and phosphoribulokinase. These increased expression of photosynthesis genes resulted in increased leaf chlorophyll pigment, photosynthetic rate, biomass growth, and grain yield both in the greenhouse and in the field. Using EMSA experiments, we showed that mEmBP-1a protein can directly bind to the promoter region of photosynthesis genes, suggesting that the direct binding of mEmBP-1a to the G-box domain of photosynthetic genes up-regulates expression of these genes. Altogether, our results show that mEmBP-1a is a major regulator of photosynthesis, which can be used to increase rice photosynthesis and yield in the field.

2006 ◽  
Vol 33 (9) ◽  
pp. 847 ◽  
Author(s):  
Adamantia Agalou ◽  
Herman P. Spaink ◽  
Andreas Roussis

The metabolic role and regulation of selenium, particularly in plants, is poorly understood. One of the proteins probably involved in the metabolic regulation of this element is the selenium-binding protein (SBP) with homologues present across prokaryotic and eukaryotic species. The high degree of conservation of SBP in different organisms suggests that this protein may play a role in fundamental biological processes. In order to gain insight into the biochemical function of SBP in plants we used the yeast two-hybrid system to identify proteins that potentially interact with an Arabidopsis thaliana (L.) Heynh. homologue. Among the putative binding partners of SBP, a NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a fructose-bisphosphate aldolase (FBA) were found as reliable positive candidates. The interaction of these proteins with SBP was confirmed by in vitro binding assays. Previous findings in Escherichia coli, demonstrated the direct binding of selenium to both GAPDH and aldolase. Therefore our results reveal the interaction, at least in pairs, of three proteins that are possibly linked to selenium and suggest the existence of a protein network consisting of at least SBP, GAPDH and FBA, triggered by or regulating selenium metabolism in plant cells.


2015 ◽  
Vol 112 (9) ◽  
pp. 2644-2651 ◽  
Author(s):  
Janette Kropat ◽  
Sean D. Gallaher ◽  
Eugen I. Urzica ◽  
Stacie S. Nakamoto ◽  
Daniela Strenkert ◽  
...  

Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper.


1998 ◽  
Vol 331 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Graeme J. THOMSON ◽  
Geoffrey J. HOWLETT ◽  
Alison E. ASHCROFT ◽  
Alan BERRY

The gene encoding the Escherichia coli Class I fructose-1,6-bisphosphate aldolase (FBP aldolase) has been cloned and the protein overproduced in high amounts. This gene sequence has previously been identified as encoding an E. coli dehydrin in the GenBank™ database [gene dhnA; entry code U73760; Close and Choi (1996) Submission to GenBank™]. However, the purified protein overproduced from the dhnA gene shares all its properties with those known for the E. coli Class I FBP aldolase. The protein is an 8–10-mer with a native molecular mass of approx. 340 kDa, each subunit consisting of 349 amino acids. The Class I enzyme shows low sequence identity with other known FBP aldolases, both Class I and Class II (in the order of 20%), which may be reflected by some novel properties of this FBP aldolase. The active-site peptide has been isolated and the Schiff-base-forming lysine residue (Lys236) has been identified by a combination of site-directed mutagenesis, kinetics and electrospray-ionization MS. A second lysine residue (Lys238) has been implicated in substrate binding. The cloning of this gene and the high levels of overexpression obtained will facilitate future structure–function studies.


1990 ◽  
Vol 18 (10) ◽  
pp. 2967-2967 ◽  
Author(s):  
S. Vijayasarathy ◽  
Isabelle Ernest ◽  
Jane E. ltzhaki ◽  
David Sherman ◽  
Michael R. Mowatt ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 999-1007
Author(s):  
R G Gregerson ◽  
L Cameron ◽  
M McLean ◽  
P Dennis ◽  
J Strommer

Abstract In most higher plants the genes encoding alcohol dehydrogenase comprise a small gene family, usually with two members. The Adh1 gene of Petunia has been cloned and analyzed, but a second identifiable gene was not recovered from any of three genomic libraries. We have therefore employed the polymerase chain reaction to obtain the major portion of a second Adh gene. From sequence, mapping and northern data we conclude this gene encodes ADH2, the major anaerobically inducible Adh gene of Petunia. The availability of both Adh1 and Adh2 from Petunia has permitted us to compare their structures and patterns of expression to those of the well-studied Adh genes of maize, of which one is highly expressed developmentally, while both are induced in response to hypoxia. Despite their evolutionary distance, evidenced by deduced amino acid sequence as well as taxonomic classification, the pairs of genes are regulated in strikingly similar ways in maize and Petunia. Our findings suggest a significant biological basis for the regulatory strategy employed by these distant species for differential expression of multiple Adh genes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ilaria Frasson ◽  
Paola Soldà ◽  
Matteo Nadai ◽  
Sara Lago ◽  
Sara N. Richter

AbstractG-quadruplexes (G4s) are four-stranded nucleic acid structures abundant at gene promoters. They can adopt several distinctive conformations. G4s have been shown to form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4, the major HSV-1 transcription factor, as the protein that most efficiently interacts with viral G4s during infection. ICP4 specific and direct binding and unfolding of parallel G4s, including those present in HSV-1 immediate early gene promoters, induced transcription in vitro and in infected cells. This mechanism was also exploited by ICP4 to promote its own transcription. Proximity ligation assay allowed visualization of G4-protein interaction at the single selected G4 in cells. G4 ligands inhibited ICP4 binding to G4s. Our results indicate the existence of a well-defined G4-viral protein network that regulates the productive HSV-1 cycle. They also point to G4s as elements that recruit transcription factors to activate transcription in cells.


2021 ◽  
Vol 11 (6) ◽  
pp. 526
Author(s):  
Yejin Lee ◽  
Youn Jung Kim ◽  
Hong-Keun Hyun ◽  
Jae-Cheoun Lee ◽  
Zang Hee Lee ◽  
...  

Hereditary dentin defects can be categorized as a syndromic form predominantly related to osteogenesis imperfecta (OI) or isolated forms without other non-oral phenotypes. Mutations in the gene encoding dentin sialophosphoprotein (DSPP) have been identified to cause dentinogenesis imperfecta (DGI) Types II and III and dentin dysplasia (DD) Type II. While DGI Type I is an OI-related syndromic phenotype caused mostly by monoallelic mutations in the genes encoding collagen type I alpha 1 chain (COL1A1) and collagen type I alpha 2 chain (COL1A2). In this study, we recruited families with non-syndromic dentin defects and performed candidate gene sequencing for DSPP exons and exon/intron boundaries. Three unrelated Korean families were further analyzed by whole-exome sequencing due to the lack of the DSPP mutation, and heterozygous COL1A2 mutations were identified: c.3233G>A, p.(Gly1078Asp) in Family 1 and c.1171G>A, p.(Gly391Ser) in Family 2 and 3. Haplotype analysis revealed different disease alleles in Families 2 and 3, suggesting a mutational hotspot. We suggest expanding the molecular genetic etiology to include COL1A2 for isolated dentin defects in addition to DSPP.


Sign in / Sign up

Export Citation Format

Share Document