scholarly journals A putative nuclear copper chaperone promotes plant immunity in Arabidopsis

2020 ◽  
Vol 71 (20) ◽  
pp. 6684-6696 ◽  
Author(s):  
Long-Xiang Chai ◽  
Kai Dong ◽  
Song-Yu Liu ◽  
Zhen Zhang ◽  
Xiao-Peng Zhang ◽  
...  

Abstract Copper is essential for many metabolic processes but must be sequestrated by copper chaperones. It is well known that plant copper chaperones regulate various physiological processes. However, the functions of copper chaperones in the plant nucleus remain largely unknown. Here, we identified a putative copper chaperone induced by pathogens (CCP) in Arabidopsis thaliana. CCP harbors a classical MXCXXC copper-binding site (CBS) at its N-terminus and a nuclear localization signal (NLS) at its C-terminus. CCP mainly formed nuclear speckles in the plant nucleus, which requires the NLS and CBS domains. Overexpression of CCP induced PR1 expression and enhanced resistance against Pseudomonas syringae pv. tomato DC3000 compared with Col-0 plants. Conversely, two CRISPR/Cas9-mediated ccp mutants were impaired in plant immunity. Further biochemical analyses revealed that CCP interacted with the transcription factor TGA2 in vivo and in vitro. Moreover, CCP recruits TGA2 to the PR1 promoter sequences in vivo, which induces defense gene expression and plant immunity. Collectively, our results have identified a putative nuclear copper chaperone required for plant immunity and provided evidence for a potential function of copper in the salicylic pathway.

2010 ◽  
Vol 107 (5) ◽  
pp. 2349-2354 ◽  
Author(s):  
Mike Wilton ◽  
Rajagopal Subramaniam ◽  
James Elmore ◽  
Corinna Felsensteiner ◽  
Gitta Coaker ◽  
...  

Plant immunity can be induced by two major classes of pathogen-associated molecules. Pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) are conserved molecular components of microbes that serve as “non-self” features to induce PAMP-triggered immunity (PTI). Pathogen effector proteins used to promote virulence can also be recognized as “non-self” features or induce a “modified-self” state that can induce effector-triggered immunity (ETI). The Arabidopsis protein RIN4 plays an important role in both branches of plant immunity. Three unrelated type III secretion effector (TTSE) proteins from the phytopathogen Pseudomonas syringae, AvrRpm1, AvrRpt2, and AvrB, target RIN4, resulting in ETI that effectively restricts pathogen growth. However, no pathogenic advantage has been demonstrated for RIN4 manipulation by these TTSEs. Here, we show that the TTSE HopF2Pto also targets Arabidopsis RIN4. Transgenic plants conditionally expressing HopF2Pto were compromised for AvrRpt2-induced RIN4 modification and associated ETI. HopF2Pto interfered with AvrRpt2-induced RIN4 modification in vitro but not with AvrRpt2 activation, suggestive of RIN4 targeting by HopF2Pto. In support of this hypothesis, HopF2Pto interacted with RIN4 in vitro and in vivo. Unlike AvrRpm1, AvrRpt2, and AvrB, HopF2Pto did not induce ETI and instead promoted P. syringae growth in Arabidopsis. This virulence activity was not observed in plants genetically lacking RIN4. These data provide evidence that RIN4 is a major virulence target of HopF2Pto and that a pathogenic advantage can be conveyed by TTSEs that target RIN4.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Haiyang Li ◽  
Haonan Wang ◽  
Maofeng Jing ◽  
Jinyi Zhu ◽  
Baodian Guo ◽  
...  

Oomycete pathogens secrete host cell-entering effector proteins to manipulate host immunity during infection. We previously showed that PsAvh52, an early-induced RxLR effector secreted from the soybean root rot pathogen, Phytophthora sojae, could suppress plant immunity. Here, we found that PsAvh52 is required for full virulence on soybean and binds to a novel soybean transacetylase, GmTAP1, in vivo and in vitro. PsAvh52 could cause GmTAP1 to relocate into the nucleus where GmTAP1 could acetylate histones H2A and H3 during early infection, thereby promoting susceptibility to P. sojae. In the absence of PsAvh52, GmTAP1 remained confined to the cytoplasm and did not modify plant susceptibility. These results demonstrate that GmTAP1 is a susceptibility factor that is hijacked by PsAvh52 in order to promote epigenetic modifications that enhance the susceptibility of soybean to P. sojae infection.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Shourong Wang ◽  
Zixiang Wang ◽  
Jieyin Li ◽  
Junchao Qin ◽  
Jianping Song ◽  
...  

AbstractAberrant expression of splicing factors was found to promote tumorigenesis and the development of human malignant tumors. Nevertheless, the underlying mechanisms and functional relevance remain elusive. We here show that USP39, a component of the spliceosome, is frequently overexpressed in high-grade serous ovarian carcinoma (HGSOC) and that an elevated level of USP39 is associated with a poor prognosis. USP39 promotes proliferation/invasion in vitro and tumor growth in vivo. Importantly, USP39 was transcriptionally activated by the oncogene protein c-MYC in ovarian cancer cells. We further demonstrated that USP39 colocalizes with spliceosome components in nuclear speckles. Transcriptomic analysis revealed that USP39 deletion led to globally impaired splicing that is characterized by skipped exons and overrepresentation of introns and intergenic regions. Furthermore, RNA immunoprecipitation sequencing showed that USP39 preferentially binds to exon-intron regions near 5′ and 3′ splicing sites. In particular, USP39 facilitates efficient splicing of HMGA2 and thereby increases the malignancy of ovarian cancer cells. Taken together, our results indicate that USP39 functions as an oncogenic splicing factor in ovarian cancer and represents a potential target for ovarian cancer therapy.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 613
Author(s):  
Alfredo Ambrico ◽  
Mario Trupo ◽  
Rosaria Magarelli ◽  
Roberto Balducchi ◽  
Angelo Ferraro ◽  
...  

Several bacteria pathogens are responsible for plant diseases causing significant economic losses. The antibacterial activity of Dunaliella salina microalgae extracts were investigated in vitro and in vivo. First, biomass composition was chemically characterized and subjected to extraction using polar/non-polar solvents. The highest extraction yield was obtained using chloroform:methanol (1:1 v/v) equal to 170 mg g−1 followed by ethanol (88 mg g−1) and hexane (61 mg g−1). In vitro examination of hexane extracts of Dunaliella salina demonstrated antibacterial activity against all tested bacteria. The hexane extract showed the highest amount of β-carotene with respect to the others, so it was selected for subsequent analyses. In vivo studies were also carried out using hexane extracts of D. salina against Pseudomonas syringae pv. tomato and Pectobacterium carotovorum subsp. carotovorum on young tomato plants and fruits of tomato and zucchini, respectively. The treated young tomato plants exhibited a reduction of 65.7% incidence and 77.0% severity of bacterial speck spot disease. Similarly, a reduction of soft rot symptoms was observed in treated tomato and zucchini fruits with a disease incidence of 5.3% and 12.6% with respect to 90.6% and 100%, respectively, for the positive control.


2020 ◽  
Vol 71 (18) ◽  
pp. 5562-5576
Author(s):  
Yi Liu ◽  
Kunru Wang ◽  
Qiang Cheng ◽  
Danyu Kong ◽  
Xunzhong Zhang ◽  
...  

Abstract Plants can be simultaneously exposed to multiple stresses. The interplay of abiotic and biotic stresses may result in synergistic or antagonistic effects on plant development and health. Temporary drought stress can stimulate plant immunity; however, the molecular mechanism of drought-induced immunity is largely unknown. In this study, we demonstrate that cysteine protease RD21A is required for drought-induced immunity. Temporarily drought-treated wild-type Arabidopsis plants became more sensitive to the bacterial pathogen-associated molecular pattern flg22, triggering stomatal closure, which resulted in increased resistance to Pseudomonas syringae pv. tomato DC3000 (Pst-DC3000). Knocking out rd21a inhibited flg22-triggered stomatal closure and compromised the drought-induced immunity. Ubiquitin E3 ligase SINAT4 interacted with RD21A and promoted its degradation in vivo. The overexpression of SINAT4 also consistently compromised the drought-induced immunity to Pst-DC3000. A bacterial type III effector, AvrRxo1, interacted with both SINAT4 and RD21A, enhancing SINAT4 activity and promoting the degradation of RD21A in vivo. Therefore, RD21A could be a positive regulator of drought-induced immunity, which could be targeted by pathogen virulence effectors during pathogenesis.


2015 ◽  
Vol 112 (17) ◽  
pp. 5533-5538 ◽  
Author(s):  
Manuel Benedetti ◽  
Daniela Pontiggia ◽  
Sara Raggi ◽  
Zhenyu Cheng ◽  
Flavio Scaloni ◽  
...  

Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP–PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.


2019 ◽  
Vol 32 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Nicolás M. Cecchini ◽  
Suruchi Roychoudhry ◽  
DeQuantarius J. Speed ◽  
Kevin Steffes ◽  
Arjun Tambe ◽  
...  

Local interactions between individual plant organs and diverse microorganisms can lead to whole plant immunity via the mobilization of defense signals. One such signal is the plastid lipid-derived oxylipin azelaic acid (AZA). Arabidopsis lacking AZI1 or EARLI1, related lipid transfer family proteins, exhibit reduced AZA transport among leaves and cannot mount systemic immunity. AZA has been detected in roots as well as leaves. Therefore, the present study addresses the effects on plants of AZA application to roots. AZA but not the structurally related suberic acid inhibits root growth when directly in contact with roots. Treatment of roots with AZA also induces resistance to Pseudomonas syringae in aerial tissues. These effects of AZA on root growth and disease resistance depend, at least partially, on AZI1 and EARLI1. AZI1 in roots localizes to plastids, similar to its known location in leaves. Interestingly, kinases previously shown to modify AZI1 in vitro, MPK3 and MPK6, are also needed for AZA-induced root-growth inhibition and aboveground immunity. Finally, deuterium-labeled AZA applied to the roots does not move to aerial tissues. Thus, AZA application to roots triggers systemic immunity through an AZI1/EARLI1/MPK3/MPK6-dependent pathway and AZA effects may involve one or more additional mobile signals.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1113
Author(s):  
Pamela Maher

Alterations occur in the homeostasis of the transition metals iron (Fe2+) and copper (Cu2+) during aging and these are further amplified in neurodegenerative diseases, including Alzheimer’s disease (AD). These observations suggest that the most effective drug candidates for AD might be those that can reduce these alterations. The flavonoid fisetin has both neuroprotective and anti-inflammatory activity both in vitro and in vivo and can bind both iron and copper suggesting that its chelating activity might play a role in its beneficial effects. To test this idea, the effects of iron and copper on both the neuroprotective and anti-inflammatory activities of fisetin were examined. It is shown that while fisetin can reduce the potentiation of cell death by iron and copper in response to treatments that lower glutathione levels, it is much less effective when the metals are combined with other inducers of oxidative stress. In addition, iron but not copper reduces the anti-inflammatory effects of fisetin in a dose-dependent manner. These effects correlate with the ability of iron but not copper to block the induction of the antioxidant transcription factor, Nrf2, by fisetin. In contrast, although the flavanone sterubin also binds iron, the metal has no effect on sterubin’s ability to induce Nrf2 or protect cells from toxic or pro-inflammatory insults. Together, these results suggest that while iron and copper binding could contribute to the beneficial effects of neuroprotective compounds in the context of neurodegenerative diseases, the consequences of this binding need to be fully examined for each compound.


2019 ◽  
Author(s):  
Fabian Giska ◽  
Gregory B. Martin

AbstractPlant immune responses, including the production of reactive oxygen species (ROS), are triggered when pattern recognition receptors (PRR) become activated upon detection of microbe-associated molecular patterns (MAMPs). Receptor-like cytoplasmic kinases are key components of PRR-dependent signaling pathways. In tomato two such kinases, Pti1a and Pti1b, are important positive regulators of the plant immune response. However, it is unknown how these kinases control plant immunity at the molecular level, and how their activity is regulated. To investigate these issues, we used mass spectrometry to search for interactors of Pti1b in Nicotiana benthamiana leaves and identified a protein phosphatase, PP2C6. An in vitro pull-down assay and in vivo split luciferase complementation assay verified this interaction. Pti1b was found to autophosphorylate on threonine-233 and this phosphorylation was abolished in the presence of PP2C6. An arginine-to-cysteine substitution at position 240 in the Arabidopsis MARIS kinase was previously reported to convert it into a constitutive-active form. The analogous substitution in Pti1b made it resistant to PP2C6 phosphatase activity, although it still interacted with PP2C6. Treatment of N. benthamiana leaves with the MAMP flg22 induced threonine phosphorylation of Pti1b. Expression of PP2C6, but not a phosphatase-inactive variant of this protein, in N. benthamiana leaves greatly reduced ROS production in response to treatment with MAMPs flg22 or csp22. The results indicate that PP2C6 acts as a negative regulator by dephosphorylating the Pti1b kinase, thereby interfering with its ability to activate plant immune responses.


2021 ◽  
Author(s):  
◽  
Jeremy George Owen

<p><b>Non-ribosomal peptide synthetases (NRPS) are large, modular enzymes that synthesisebiologically active secondary metabolites from amino acid precursors without the need for anucleic acid template. NRPS play an integral role in microbial physiology and also havepotential applications in the synthesis of novel peptide molecules. Both of these aspects areexamined in this thesis.</b></p> <p>Under conditions of iron starvation Pseudomonas syringae synthesises siderophores for activeuptake of iron. The primary siderophore of P. syringae is pyoverdine, a fluorescent moleculethat is assembled from amino acid (aa) precursors by NRPS. Five putative pyoverdine NRPSgenes in P. syringae pv. phaseolicola 1448a (Ps1448a) were identified and characterised insilico and their role in pyoverdine biosynthesis was confirmed by gene knockout. Creation ofpyoverdine null Ps1448a enabled identification of a previously uncharacterised temperatureregulatedsecondary siderophore, achromobactin, which is NRPS independent and has loweraffinity for iron. Pyoverdine and achromobactin null mutants were characterised in regard toiron uptake, virulence and growth in iron-limited conditions. Determination of the substratespecificity for the seven adenylation (A) domains of the Ps1448a pyoverdine sidechain NRPSwas also attempted. Although ultimately unsuccessful, these attempts provided a rigorousassessment of methods for the expression, purification and biochemical characterisation of Adomains.</p> <p>The Ps1448a NRPS were subsequently employed in domain swapping experiments to testcondensation (C) domain specificity for aa substrates during peptide formation in vivo.</p> <p>Experiments in which the terminal C- and/or A-domain of the Pseudomonas aeruginosa(PAO1) pyoverdine NRPS system were replaced with alternative domains from Ps1448a andPAO1 were consistent with previous in vitro observations that C-domains exhibit strongsidechain and stereo-selectivity at the downstream aa position, but only stereo-selectivity atthe upstream aa position.</p> <p>These results prompted investigation into the role of inter-domain communication in NRPSfunction, to test the hypothesis that the thiolation (T) domain enters into specific interactionswith other domains, which might provide an alternative explanation for the diminished activityof recombinant NRPS enzymes. A recently characterised single-module NRPS, bpsA, waschosen as a reporter gene for these experiments based on its ability to generate blue pigment inEscherichia coli. Substitution of the native bpsA T-domain consistently impaired function,consistent with the hypothesis. It was shown that directed evolution could be applied to restorefunction in substituted T-domains. Mutations that restored function were mapped in silico, anda structural model for interaction between the thioester (TE) and T-domain of BpsA wasderived.</p> <p>The utility of bpsA for discovery and characterisation of phosphopantetheinyl transferase(PPTase) enzymes was also investigated. In vivo and in vitro assays for determination ofPPTase activity were developed and a high-throughput screen for discovery of new PPTases inenvironmental DNA libraries was successfully implemented.</p>


Sign in / Sign up

Export Citation Format

Share Document