scholarly journals Bottlenecks and opportunities in field-based high-throughput phenotyping for heat and drought stress

Author(s):  
Nathan T Hein ◽  
Ignacio A Ciampitti ◽  
S V Krishna Jagadish

Abstract Flowering and grain-filling stages are highly sensitive to heat and drought stress exposure, leading to significant loss in crop yields. Therefore, phenotyping to enhance resilience to these abiotic stresses is critical for sustaining genetic gains in crop improvement programs. However, traditional methods for screening traits related to these stresses are slow, laborious, and often expensive. Remote sensing provides opportunities to introduce low-cost, less-biased, high-throughput phenotyping methods to capture large genetic diversity to facilitate enhancement of stress resilience in crops. This review focuses on four key physiological traits or processes that are critical in understanding crop responses to drought and heat stress during reproductive and grain-filling periods. Specifically, these traits include: i) time-of-day of flowering, to escape these stresses during flowering, ii) optimizing photosynthetic efficiency, iii) storage and translocation of water-soluble carbohydrates, and iv) yield and yield components to provide in-season yield estimates. An overview of current advances in remote sensing in capturing these traits, limitations with existing technology and future direction of research to develop high-throughput phenotyping approaches for these traits are discussed in this review. In the future, phenotyping these complex traits will require sensor advancement, high-quality imagery combined with machine learning methods, and efforts in transdisciplinary science to foster integration across disciplines.

2017 ◽  
Vol 44 (1) ◽  
pp. 76 ◽  
Author(s):  
Tania Gioia ◽  
Anna Galinski ◽  
Henning Lenz ◽  
Carmen Müller ◽  
Jonas Lentz ◽  
...  

New techniques and approaches have been developed for root phenotyping recently; however, rapid and repeatable non-invasive root phenotyping remains challenging. Here, we present GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system (4 plants min–1) based on flat germination paper. GrowScreen-PaGe allows the acquisition of time series of the developing root systems of 500 plants, thereby enabling to quantify short-term variations in root system. The choice of germination paper was found to be crucial and paper ☓ root interaction should be considered when comparing data from different studies on germination paper. The system is suitable for phenotyping dicot and monocot plant species. The potential of the system for high-throughput phenotyping was shown by investigating phenotypic diversity of root traits in a collection of 180 rapeseed accessions and of 52 barley genotypes grown under control and nutrient-starved conditions. Most traits showed a large variation linked to both genotype and treatment. In general, root length traits contributed more than shape and branching related traits in separating the genotypes. Overall, results showed that GrowScreen-PaGe will be a powerful resource to investigate root systems and root plasticity of large sets of plants and to explore the molecular and genetic root traits of various species including for crop improvement programs.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jana Ebersbach ◽  
Nazifa Azam Khan ◽  
Ian McQuillan ◽  
Erin E. Higgins ◽  
Kyla Horner ◽  
...  

Phenotyping is considered a significant bottleneck impeding fast and efficient crop improvement. Similar to many crops, Brassica napus, an internationally important oilseed crop, suffers from low genetic diversity, and will require exploitation of diverse genetic resources to develop locally adapted, high yielding and stress resistant cultivars. A pilot study was completed to assess the feasibility of using indoor high-throughput phenotyping (HTP), semi-automated image processing, and machine learning to capture the phenotypic diversity of agronomically important traits in a diverse B. napus breeding population, SKBnNAM, introduced here for the first time. The experiment comprised 50 spring-type B. napus lines, grown and phenotyped in six replicates under two treatment conditions (control and drought) over 38 days in a LemnaTec Scanalyzer 3D facility. Growth traits including plant height, width, projected leaf area, and estimated biovolume were extracted and derived through processing of RGB and NIR images. Anthesis was automatically and accurately scored (97% accuracy) and the number of flowers per plant and day was approximated alongside relevant canopy traits (width, angle). Further, supervised machine learning was used to predict the total number of raceme branches from flower attributes with 91% accuracy (linear regression and Huber regression algorithms) and to identify mild drought stress, a complex trait which typically has to be empirically scored (0.85 area under the receiver operating characteristic curve, random forest classifier algorithm). The study demonstrates the potential of HTP, image processing and computer vision for effective characterization of agronomic trait diversity in B. napus, although limitations of the platform did create significant variation that limited the utility of the data. However, the results underscore the value of machine learning for phenotyping studies, particularly for complex traits such as drought stress resistance.


2020 ◽  
Author(s):  
Feiyu Zhu ◽  
Manny Saluja ◽  
Jaspinder Singh ◽  
Puneet Paul ◽  
Scott E. Sattler ◽  
...  

AbstractHigh-throughput genotyping coupled with molecular breeding approaches has dramatically accelerated crop improvement programs. More recently, improved plant phenotyping methods have led to a shift from manual measurements to automated platforms with increased scalability and resolution. Considerable effort has also gone into the development of large-scale downstream processing of the imaging datasets derived from high-throughput phenotyping (HTP) platforms. However, most available tools require some programing skills. We developed PhenoImage – an open-source GUI based cross-platform solution for HTP image processing with the aim to make image analysis accessible to users with either little or no programming skills. The open-source nature provides the possibility to extend its usability to meet user-specific requirements. The availability of multiple functions and filtering parameters provides flexibility to analyze images from a wide variety of plant species and platforms. PhenoImage can be run on a personal computer as well as on high-performance computing clusters. To test the efficacy of the application, we analyzed the LemnaTec Imaging system derived RGB and fluorescence shoot images from two plant species: sorghum and wheat differing in their physical attributes. In the study, we discuss the development, implementation, and working of the PhenoImage.HighlightPhenoImage is an open-source application designed for analyzing images derived from high-throughput phenotyping.


2021 ◽  
Vol 22 (15) ◽  
pp. 8266
Author(s):  
Minsu Kim ◽  
Chaewon Lee ◽  
Subin Hong ◽  
Song Lim Kim ◽  
Jeong-Ho Baek ◽  
...  

Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.


2020 ◽  
Vol 12 (3) ◽  
pp. 574 ◽  
Author(s):  
Yuncai Hu ◽  
Samuel Knapp ◽  
Urs Schmidhalter

Enhancing plant breeding to ensure global food security requires new technologies. For wheat phenotyping, only limited seeds and resources are available in early selection cycles. This forces breeders to use small plots with single or multiple row plots in order to include the maximum number of genotypes/lines for their assessment. High-throughput phenotyping through remote sensing may meet the requirements for the phenotyping of thousands of genotypes grown in small plots in early selection cycles. Therefore, the aim of this study was to compare the performance of an unmanned aerial vehicle (UAV) for assessing the grain yield of wheat genotypes in different row numbers per plot in the early selection cycles with ground-based spectral sensing. A field experiment consisting of 32 wheat genotypes with four plot designs (1, 2, 3, and 12 rows per plot) was conducted. Near infrared (NIR)-based spectral indices showed significant correlations (p < 0.01) with the grain yield at flowering to grain filling, regardless of row numbers, indicating the potential of spectral indices as indirect selection traits for the wheat grain yield. Compared with terrestrial sensing, aerial-based sensing from UAV showed consistently higher levels of association with the grain yield, indicating that an increased precision may be obtained and is expected to increase the efficiency of high-throughput phenotyping in large-scale plant breeding programs. Our results suggest that high-throughput sensing from UAV may become a convenient and efficient tool for breeders to promote a more efficient selection of improved genotypes in early selection cycles. Such new information may support the calibration of genomic information by providing additional information on other complex traits, which can be ascertained by spectral sensing.


2007 ◽  
Vol 28 (2) ◽  
pp. 232-238 ◽  
Author(s):  
Allan I. Pack ◽  
Raymond J. Galante ◽  
Greg Maislin ◽  
Jacqueline Cater ◽  
Dimitris Metaxas ◽  
...  

Assessment of sleep in mice currently requires initial implantation of chronic electrodes for assessment of electroencephalogram (EEG) and electromyogram (EMG) followed by time to recover from surgery. Hence, it is not ideal for high-throughput screening. To address this deficiency, a method of assessment of sleep and wakefulness in mice has been developed based on assessment of activity/inactivity either by digital video analysis or by breaking infrared beams in the mouse cage. It is based on the algorithm that any episode of continuous inactivity of ≥40 s is predicted to be sleep. The method gives excellent agreement in C57BL/6J male mice with simultaneous assessment of sleep by EEG/EMG recording. The average agreement over 8,640 10-s epochs in 24 h is 92% ( n = 7 mice) with agreement in individual mice being 88–94%. Average EEG/EMG determined sleep per 2-h interval across the day was 59.4 min. The estimated mean difference (bias) per 2-h interval between inactivity-defined sleep and EEG/EMG-defined sleep was only 1.0 min (95% confidence interval for mean bias −0.06 to +2.6 min). The standard deviation of differences (precision) was 7.5 min per 2-h interval with 95% limits of agreement ranging from −13.7 to +15.7 min. Although bias significantly varied by time of day ( P = 0.0007), the magnitude of time-of-day differences was not large (average bias during lights on and lights off was +5.0 and −3.0 min per 2-h interval, respectively). This method has applications in chemical mutagenesis and for studies of molecular changes in brain with sleep/wakefulness.


2016 ◽  
Author(s):  
David Gouache ◽  
Katia Beauchêne ◽  
Agathe Mini ◽  
Antoine Fournier ◽  
Benoit de Solan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document