Clinical Applications

2016 ◽  
pp. 236-252
Author(s):  
Elson L. So

Many electrophysiological assessment and techniques of clinical neurophysiology can be used in the assessment of patients with suspected disease of the central nervous system. Each of the techniques is applied either to assist clinicians in assessing disease of the central nervous system or, less commonly, to monitor changes in neural function. These techniques can be used to monitor neural function in observing progression of disease, such as the frequency of seizures, or improvement in a patient’s condition with specific treatment. They are also used in the intensive care unit and operating room to identify progressive neural damage. The clinical neurophysiological testing technique that is most appropriate for a patient depends on the clinical problem, and, often, some combination of techniques best provides the necessary data. This chapter focuses on the application of clinical neurophysiological techniques in assessing patients with suspected central nervous system disorders.

2015 ◽  
Vol 122 (3) ◽  
pp. 697-706 ◽  
Author(s):  
Russell R. Lonser ◽  
Malisa Sarntinoranont ◽  
Paul F. Morrison ◽  
Edward H. Oldfield

Convection-enhanced delivery (CED) is a bulk flow–driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.


2020 ◽  
Vol 78 (3) ◽  
pp. 176-178
Author(s):  
Thiago Ferreira Simões DE SOUZA

Abstract At the beginning of the 20th century, cerebrospinal fluid (CSF) collection and analysis emerged as a promising aid in the diagnosis of diseases of the central nervous system. It was obtained through the established procedure of lumbar puncture, described by Heinrich Quinke in 1891. The search for an alternative way to gather the CSF emerged in animal research, highlighting the cisterna magna as a promising source, with relative safety when performed by someone trained. Described initially and in detail by James Ayer in 1920, the procedure was widely adopted by neurologists and psychiatrists at the time, featuring its multiple advantages and clinical applications. After a period of great procedure use and exponential data collection, its complications and risks relegated the puncture of the cisterna magna as an alternative route that causes fear and fascination in modern Neurology.


PEDIATRICS ◽  
1973 ◽  
Vol 52 (3) ◽  
pp. 449-451
Author(s):  
Barry H. Rumack

The increased incidence of poisoning by overdoses of commonly used drugs with anticholinergic properties (Table I) and the general lack of knowledge concerning a specific treatment for these poisons warrants a summary of the problem at this time. Some plants containing anticholinergic alkaloids are also included in this group as they may also be taken intentionally or accidentally. Drugs with anticholinergic properties primanly antagonize acetylcholine competitively at the neuroreceptor site. Cardiac muscle, exocrine glands, and smooth muscle are most markedly affected.1 Action of the inhibitors is overcome by increasing the level of acetylcholine naturally generated in the body through inhibiting the enzyme (choline esterase) which normally prevents accumulation of excess acetylcholine. It does this by hydrolyzing that compound to inactive acetic acid and choline. Agents which inhibit this enzyme, so that acetylcholine accumulates at the neuroreceptor sites, are called anticholine esterases. Physostigmine, one of the anticholine esterases which is a tertiary amine, crosses into the central nervous system and can reverse both central and peripheral anticholinergic actions2. Neostigmine and pyridostigmine are also anticholine esterases but they are quaternary amines and are capable of acting only outside the central nervous system because of solubility and ionization characteristics. The anticholinergic syndrome has both central and peripheral signs and symptoms. Central toxic effects include anxiety, delirium, disorientation, hallucinations, hyperactivity, and seizures.2 Severe poisoning may produce coma, medullary paralysis, and death. Peripheral taxicity is characterized by tachycardia, hyperpyrexia, mydriasis, vasodilatation, urinary retention, diminution of gastrointestinal motility, decrease of secretion in salivary and sweat glands, and loss of secretions in the pharynx, bronchi, and nasal passages.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 165
Author(s):  
Ellen S. Hauck ◽  
James G. Hecker

Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Lipid-mediated nucleic acid delivery is an alternative to viral vector-mediated gene delivery and has the following advantages. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, since transit across the nuclear membrane is not necessary, and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Delivery of RNA to target organ(s) has previously been challenging due to RNA’s rapid degradation in biological systems, but cationic lipids complexed with RNA, as well as lipid nanoparticles (LNPs), have allowed for delivery and expression of the complexed RNA both in vitro and in vivo. This review will focus on the non-viral lipid-mediated delivery of RNAs, including mRNA, siRNA, shRNA, and microRNA, to the central nervous system (CNS), an organ with at least two unique challenges. The CNS contains a large number of slowly dividing or non-dividing cell types and is protected by the blood brain barrier (BBB). In non-dividing cells, RNA-lipid complexes demonstrated increased transfection efficiency relative to DNA transfection. The efficiency, timing of the onset, and duration of expression after transfection may determine which nucleic acid is best for which proposed therapy. Expression can be seen as soon as 1 h after RNA delivery, but duration of expression has been limited to 5–7 h. In contrast, transfection with a DNA lipoplex demonstrates protein expression within 5 h and lasts as long as several weeks after transfection.


Author(s):  
Agnieszka Piechal ◽  
Alicja Jakimiuk ◽  
Dagmara Mirowska-Guzel

AbstarctSigma receptors were identified relatively recently, and their presence has been confirmed in the central nervous system and peripheral organs. Changes in sigma receptor function or expression may be involved in neurological diseases, and thus sigma receptors represent a potential target for treating central nervous system disorders. Many substances that are ligands for sigma receptors are widely used in therapies for neurological disorders. In the present review, we discuss the roles of sigma receptors, especially in the central nervous system disorders, and related therapies. Graphic abstract


Author(s):  
Anna Lena Fisse ◽  
Kalliopi Pitarokoili ◽  
David Leppert ◽  
Jeremias Motte ◽  
Xiomara Pedreiturria ◽  
...  

Abstract Objective Neurofilament light chain (NfL) in serum indicates neuro-axonal damage in diseases of the central and peripheral nervous system. Reliable markers to enable early estimation of clinical outcome of intensive care unit (ICU) patients are lacking. The aim of this study was to investigate, whether serum NfL levels are a possible biomarker for prediction of outcome of ICU patients. Methods Thirty five patients were prospectively examined from admission to ICU until discharge from the hospital or death. NfL levels were measured longitudinally by a Simoa assay. Results NfL was elevated in all ICU patients and reached its maximum at day 35 of ICU treatment. Outcome determined by modified Rankin Scale at the end of the follow-up period correlated with NfL level at admission, especially in the group of patients with impairment of the central nervous system (n = 25, r = 0.56, p = 0.02). Conclusion NfL could be used as a prognostic marker for outcome of ICU patients, especially in patients with impairment of the central nervous system.


2000 ◽  
Vol 23 (4) ◽  
pp. 540-541
Author(s):  
Peter Gouras

Neural organization describes an approach to analyzing neural function in anatomically defined subsystems in the brain, the hippocampus, cerebellum, sensory systems, thalamus, basal ganglia, and cerebral cortex, combining information on neurocircuitry with mathematical models that link structure with function. It is an up-to-date source on the major schemes and background for neural modeling of the central nervous system and is combined with a Web site that includes tutorials and on-line modeling possibilities.


Sign in / Sign up

Export Citation Format

Share Document