Methylcitrate cycle gene MCD is essential for the virulence of Talaromyces marneffei

2019 ◽  
Vol 58 (3) ◽  
pp. 351-361 ◽  
Author(s):  
Jiao Feng ◽  
Liya He ◽  
Xing Xiao ◽  
Zhiwen Chen ◽  
Chunmei Chen ◽  
...  

Abstract Talaromyces marneffei (T. marneffei), which used to be known as Penicillium marneffei, is the causative agent of the fatal systemic mycosis known as talaromycosis. For the purpose of understanding the role of methylcitrate cycle in the virulence of T. marneffei, we generated MCD deletion (ΔMCD) and complementation (ΔMCD+) mutants of T. marneffei. Growth in different carbon sources showed that ΔMCD cannot grow on propionate media and grew slowly on the valerate, valine, methionine, isoleucine, cholesterol, and YNB (carbon free) media. The macrophage killing assay showed that ΔMCD was attenuated in macrophages of mice in vitro, especially at the presence of propionate. Finally, virulence studies in a murine infection experiment revealed attenuated virulence of the ΔMCD, which indicates MCD is essential for T. marneffei virulence in the host. This experiment laid the foundation for the further study of the specific mechanisms underlying the methylcitrate cycle of T. marneffei and may provide suitable targets for new antifungals.

2021 ◽  
Vol 7 (10) ◽  
pp. 798
Author(s):  
Artid Amsri ◽  
Juthatip Jeenkeawpieam ◽  
Panwarit Sukantamala ◽  
Monsicha Pongpom

Talaromyces marneffei is a dimorphic pathogenic fungus causing opportunistic infection in immunocompromised patients. It is a facultative intracellular pathogen and is usually found inside the host macrophages during infection. Alternative carbons and iron are the important nutrients associated with intracellular survival and pathogenesis of T. marneffei. This study reported the importance of the transcription factor AcuK in control of gluconeogenesis and iron acquisition in T. marneffei. Deletion of acuK gene in T. marneffei resulted in retardation of growth and germination in both mold and yeast phases. Microscopically, ΔacuK showed double nuclei hyphae. However, the yeast cells showed normal morphology. The ΔacuK failed to grow in iron-limiting conditions. Additionally, it could not grow in a medium containing gluconeogenic carbon sources. Moreover, ΔacuK showed higher susceptibility to macrophage killing than the wild type. These results demonstrated that AcuK controlled both iron acquisition and gluconeogenesis, and it could contribute to the pathogenicity of this fungus.


1995 ◽  
Vol 43 (4) ◽  
pp. 339-345 ◽  
Author(s):  
M.D. Lledó ◽  
M.B. Crespo ◽  
J.B. Amo-Marco

Populus euphratica Olivier is native to the Irano—Turanian areas (Middle East). Elche (Alicante province, SE Spain) is known to be its only European location. Nodal segments from root shoots were established in vitro in a Murashige and Skoog medium supplemented with several cytokinins. Ethylene inhibitors AgNO3 and CoCl2 were used in combination with kinetin. Hormone-free media supplemented with sucrose (20–60 mg 1−1) was also tested. Ethylene was measured by gas chromatography, and both the percentage of sprouting shoots and lenticel hypertrophy in cultures were recorded. Ethylene production was higher in cultures supplemented with cytokinins (especially with meta-topolin), with high sprouting percentages, and lenticel hypertrophy. In cultures supplemented with 6-benzylaminopurine or 6-(γ,γ,-dimethylallylamino)-purine, ethylene production was lower and explants looked unhealthy. Ethylene formation was inhibited in cultures supplemented with AgNO3 (1 mg 1−1), which also decreased percentage of sprouting buds and lenticel hypertrophy.


2006 ◽  
Vol 72 (7) ◽  
pp. 5097-5099 ◽  
Author(s):  
Phyllis M. O'Donnell ◽  
Hernan Aviles ◽  
Mark Lyte ◽  
Gerald Sonnenfeld

ABSTRACT Norepinephrine is a stress hormone that enhances bacterial growth. We examined the effects of a small inoculum on the norepinephrine-induced growth of species previously reported to be unaffected by norepinephrine. The results indicated that a reduced inoculum density is essential for observing norepinephrine-induced effects. Additional studies using serum-free media suggested that transferrin plays a role in norepinephrine-induced growth.


2015 ◽  
Vol 27 (1) ◽  
pp. 223
Author(s):  
C. Dores ◽  
I. Dobrinski

In vertebrates, the primary cilium is a nearly ubiquitous organelle present in somatic cells, but little is known about its function in the male gonad. We investigated the role of primary cilia in testis cells using in vitro formation of seminiferous tubules and in vitro culture of testicular somatic cells by inhibiting the primary cilium with CiliobrevinD, a cell-permeable, reversible chemical modulator that inhibits the major component of the organelle: ATPase motor cytoplasmic dynein. We analysed in vitro cultures for the presence of primary cilia and the activation of hedgehog signalling through translocation of Gli2 to the nuclei; in vitro tubule formation was evaluated by length and width of tubules formed. Methods: testicular cells were harvested from neonatal pigs by 2-step enzymatic digestion. Cells (50 × 106 mL–1) were plated on 100 mm Petri dishes in 15 mL of DMEM + 5% FBS + 50 U of penicillin and incubated at 37°C in 5% CO2 in air overnight, cells remaining in suspension and those slightly attached were removed and the somatic cells attached were trypsinized to obtain a single cell suspension, and then submitted to two different protocols: in vitro culture (A) or in vitro tubule formation (B), n = 5 replicates each. For A, somatic cells were replated on coverslips in 24-well plates and cultured in serum free media for 48 h, then for the treated group, 10 mM of CiliobrevinD was added for 24 h, attached cells from control and treated groups were fixed in 4% PFA and characterised by immunocytochemistry for ARL13B, Vimentin, and Gli2. For B: 1 × 106 cells were added to 24-well plates coated with 1 : 1 diluted Matrigel, the control group was kept in serum free media and to the treated group was added 20 mM CiliobrevinD at Day 0. Results: A) primary cilia were present in 89.3 ± 2.3% of cells cultured in serum-free media for the control group and Gli2 was located in the nuclei of 90.2 ± 1.2% of cells; in the CiliobrevinD-treated group the percentage of primary cilia decreased (P < 0.05) to 3.1 ± 2.5% and nuclear Gli2 to 3.9 ± 0.7; B) tubules formed in the control group were significantly longer and wider than the ones formed when CiliobrevinD was added (9.91 ± 0.35 v. 5.540 ± 1.08 mm and 339.8 ± 55.78 v. 127.2 ± 11.9 µm, respectively, P < 0.05 by Student's t-test). In conclusion, the inhibition of ATPase motor cytoplasmic dynein perturbs formation of primary cilia in testicular somatic cells, blocks Hedgehog signalling, and impairs in vitro tubule formation. Therefore, primary cilia on testicular somatic cells appear to be essential for testicular morphogenesis.Research was supported by 5 R01 OD016575-13.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 279-279
Author(s):  
Filomena Di Giacomo ◽  
Xujun Wang ◽  
Danilo Fiore ◽  
Lorena Consolino ◽  
Jude Phillip ◽  
...  

Abstract Introduction. T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous malignancy associated with a high risk of treatment failure. Efforts to improve outcomes have focused on underlying genetic defects. However, new evidence suggests that the microenvironment can foster drug resistance/relapses. Identification of factors that contribute to microenvironment-mediated chemo-refractoriness remains an important challenge. Here, we sought to construct an in vitro platform to dissect tumor-host interactions and to optimize drug treatments using Patient-Derived Tumor Xenograft models (PDTX) of high risk adult T-ALL and engineered human endothelial cells. Methods. T-ALL PDTX were established and serially passaged in NSG mice. Engraftment was monitored by flow cytometry of peripheral blood and/or MRI. Mice were sacrificed and leukemic cells were harvested from the spleen/bone marrow. To determine the ex vivo growing conditions, we first cultured a panel of 8 "bona fide" T-ALL cell lines and 11 PDTX cells alone in complete RPMI 20% FCS supplemented with IL2, IL12, IL15 and IL7; or co-cultured with human E4-ORF1 endothelial cells (ECs) without ILs in complete RPMI 20% FCS or serum/cytokine-free media. CDK4/6, MEK, PI3K and JAK inhibitors were used at 0.1 and 1 µM alone and in combination. Cell titer glo, cell titer blue, Annexin-V and S-cell cycle analysis were used as readouts. Total RNA from cells before and after co-culture was extracted for paired-end RNA sequencing on an Illumina HiSeq2500. Results. To study the supporting role of ECs, we first co-cultured ECs with T-ALL cell lines in vitro (serum/cytokine free co-culture) and showed that ECs could reproducibly sustain the viability of 3/8 cell lines (Loucy, KOPTK1, P12 Ichikawa) serum/cytokine-free media. A partial rescue was seen with 3 additional lines (HPB-ALL, CCRF-CEM, CUTLL1), while 2 (KE37, DND41) underwent massive cell death. We next tested whether either ILs or CXCL12 could provide anti-apoptotic signals and demonstrated that KOPTK1 and Loucy were only partially rescued by IL15 or CXCL12. Conversely, IL7, although capable of inducing a robust upregulation of pSTAT5, had no effect (CCRF-CEM and CUTLL1). We then characterized 11 PDTX from 15 high-risk adult T-ALL patients. All PDTX were serially propagated and caused T-ALL in subsequent NSG mice (massive spleen and bone marrow infiltration with extensive paravertebral mass associated with paralysis and multi-organ involvement). Genomic analysis (RNA-seq) demonstrated a high concordance between primary (pre-implant) and PDTX samples. All of them were extensively studied ex vivo, demonstratingthat T-ALL PDTX cells could only survive in ILs supplemented media, even better if enriched of growth factors and supplements for the expansion of human hematopoietic cells. However, when PDTX cells were treated with targeting compounds they all underwent massive apoptosis. Conversely, individual PDTX T-ALL could be selectively rescued by ECs, allowing the construction of individual drug response profile. To extend these data, 7 PDX T-ALL samples were screened against a 430-targeted compound library in supplemented RPMI or Stem Span media. Results indicated differential cell killing and gain (NFKB, BTK) and loss (TP-53, IGF-1R) of targets. Conclusions. These data clearly demonstrate a key role of aberrantly activated vascular niche in T-ALL cell maintenance and drug resistance. We envisage that drug screening of EC+T-ALL will lead to the identification of actionable targets in each individual patient. Our report supports the potential for future personalized curative strategies aimed at targeting both tumor cells and host tissue supporting niche elements disrupting pro-tumorigenic signals within leukemia cell niches. Disclosures Foà: Roche: Consultancy, Speakers Bureau; Genentech: Consultancy; Janssen: Consultancy, Speakers Bureau; Gilead: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; BMS: Consultancy; Pfizer: Speakers Bureau; Ariad: Speakers Bureau. Rafii:Angiocrine Bioscience: Equity Ownership, Other: Non-paid consultant.


2012 ◽  
Vol 40 (4) ◽  
pp. 2837-2849 ◽  
Author(s):  
Mehwish Yaseen ◽  
Touqeer Ahmad ◽  
Gaurav Sablok ◽  
Alvaro Standardi ◽  
Ishfaq Ahmad Hafiz

2006 ◽  
Vol 188 (7) ◽  
pp. 2343-2354 ◽  
Author(s):  
Gonzalo Durante-Rodríguez ◽  
María Teresa Zamarro ◽  
José Luis García ◽  
Eduardo Díaz ◽  
Manuel Carmona

ABSTRACT The role of oxygen in the transcriptional regulation of the PN promoter that controls the bzd operon involved in the anaerobic catabolism of benzoate in the denitrifying Azoarcus sp. strain CIB has been investigated. In vivo experiments using PN ::lacZ translational fusions, in both Azoarcus sp. strain CIB and Escherichia coli cells, have shown an oxygen-dependent repression effect on the transcription of the bzd catabolic genes. E. coli Fnr was required for the anaerobic induction of the PN promoter, and the oxygen-dependent repression of the bzd genes could be bypassed by the expression of a constitutively active Fnr* protein. In vitro experiments revealed that Fnr binds to the PN promoter at a consensus sequence centered at position −41.5 from the transcription start site overlapping the −35 box, suggesting that PN belongs to the class II Fnr-dependent promoters. Fnr interacts with RNA polymerase (RNAP) and is strictly required for transcription initiation after formation of the RNAP-PN complex. An fnr ortholog, the acpR gene, was identified in the genome of Azoarcus sp. strain CIB. The Azoarcus sp. strain CIB acpR mutant was unable to grow anaerobically on aromatic compounds and it did not drive the expression of the PN ::lacZ fusion, suggesting that AcpR is the cognate transcriptional activator of the PN promoter. Since the lack of AcpR in Azoarcus sp. strain CIB did not affect growth on nonaromatic carbon sources, AcpR can be considered a transcriptional regulator of the Fnr/Crp superfamily that has evolved to specifically control the central pathway for the anaerobic catabolism of aromatic compounds in Azoarcus.


1971 ◽  
Vol 17 (7) ◽  
pp. 987-991 ◽  
Author(s):  
A. H. W. Hauschild ◽  
L. Niilo ◽  
W. J. Dorward

Vegetative cells of three strains of Clostridium perfringens type A, free of erythemal activity, were suspended in fresh medium and injected into ligated intestinal loops of lambs. Examination of the loop contents after 6.5 h showed significant accumulation of fluid, multiplication and sporulation of C. perfringens, and erythemal activity in both the supernatant fluids and the sediments.The erythemal factor produced in vivo was identical with the erythemal factor of sporulated cells of C. perfringens grown in vitro, and again caused accumulation of fluid when transferred into ligated intestinal loops of recipient lambs. Immune rabbit serum prepared against extracts from sporulated cells of C. perfringens, and absorbed with extracts from vegetative cells of the same strain, completely neutralized the enterotoxic and erythemal activities of the in vivo-produced factor.It is concluded that the erythemal factor is the causative agent in C. perfringens type A enteritis. The term "Clostridium perfringens enterotoxin" is proposed to characterize the erythemal factor.


Sign in / Sign up

Export Citation Format

Share Document