scholarly journals Constraints on the spin-pole orientation, jet morphology, and rotation of interstellar comet 2I/Borisov with deep HST imaging

2020 ◽  
Vol 497 (4) ◽  
pp. 4031-4041
Author(s):  
Bryce T Bolin ◽  
Carey M Lisse

ABSTRACT We present high resolution, deep imaging of interstellar comet 2I/Borisov taken with the Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3) on 2019 December 8 UTC and 2020 January 27 UTC (HST GO 16040, PI: Bolin) before and after its perihelion passage in combination with HST/WFC3 images taken on 2019 October 12 UTC and 2019 November 16 UTC (HST GO/DD 16009, PI: Jewitt) before its outburst and fragmentation of 2020 March, thus observing the comet in a relatively undisrupted state. We locate 1–2 arcsec long (2000–3000 km projected length) jet-like structures near the optocentre of 2I that appear to change position angles from epoch to epoch. With the assumption that the jet is located near the rotational pole supported by its stationary appearance on ∼10–100 h time frames in HST images, we determine that 2I’s pole points near α = 322 ± 10° and δ = 37 ± 10° (λ = 341° and β  = 48°) and may be in a simple rotation state. Additionally, we find evidence for possible periodicity in the HST time-series light curve on the time-scale of ∼5.3 h with a small amplitude of ∼0.05 mag implying a lower limit on its b/a ratio of ∼1.5 unlike the large ∼2 mag light curve observed for 1I/‘Oumuamua. However, these small light-curve variations may not be the result of the rotation of 2I’s nucleus due to its dust-dominated light-scattering cross-section. Therefore, uniquely constraining the pre-Solar system encounter, pre-outburst rotation state of 2I may not be possible even with the resolution and sensitivity provided by HST observations.

2019 ◽  
Vol 624 ◽  
pp. A25 ◽  
Author(s):  
Søren S. Larsen ◽  
Holger Baumgardt ◽  
Nate Bastian ◽  
Svea Hernandez ◽  
Jean Brodie

We present new deep imaging of the central regions of the remote globular cluster NGC 2419, obtained with the F343N and F336W filters of the Wide Field Camera 3 on board the Hubble Space Telescope. The new data are combined with archival imaging to constrain nitrogen and helium abundance variations within the cluster. We find a clearly bimodal distribution of the nitrogen-sensitive F336W–F343N colours of red giants, from which we estimate that about 55% of the giants belong to a population with about normal (field-like) nitrogen abundances (P1), while the remaining 45% belong to a nitrogen-rich population (P2). On average, the P2 stars are more He-rich than the P1 stars, with an estimated mean difference of ΔY ≃ 0.05, but the P2 stars exhibit a significant spread in He content and some may reach ΔY ≃ 0.13. A smaller He spread may also be present for the P1 stars. Additionally, stars with spectroscopically determined low Mg abundances ([Mg/Fe] <  0) are generally associated with P2. We find the P2 stars to be slightly more centrally concentrated in NGC 2419 with a projected half-number radius of about 10% less than for the P1 stars, but the difference is not highly significant (p ≃ 0.05). Using published radial velocities, we find evidence of rotation for the P1 stars, whereas the results are inconclusive for the P2 stars, which are consistent with no rotation as well as the same average rotation found for the P1 stars. Because of the long relaxation time scale of NGC 2419, the radial trends and kinematic properties of the populations are expected to be relatively unaffected by dynamical evolution. Hence, they provide constraints on formation scenarios for multiple populations, which must account not only for the presence of He spreads within sub-populations identified via CNO variations, but also for the relatively modest differences in the spatial distributions and kinematics of the populations.


2009 ◽  
Vol 5 (S266) ◽  
pp. 24-28
Author(s):  
Xiaoying Pang ◽  
Eva K. Grebel ◽  
Martin Altmann

AbstractNGC 3603 is one of the most massive, compact young star clusters in the Milky Way. The cluster has an age of only about 1 Myr and is embedded in a giant molecular cloud with ongoing star formation. We have analyzed deep imaging data obtained with the Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope. We have obtained two epochs separated by 10 years, from which we derived proper motions which we used to determine cluster membership. After the removal of field stars, the resulting color–magnitude diagram shows a main sequence in addition to another clear sequence of pre-main-sequence stars. The cluster shows pronounced mass segregation and appears to have a very short crossing timescale. Our photometric, astrometric and kinematic data help us to evaluate the dissolution timescale of NGC 3603 and whether the mass segregation is likely to be primordial or evolutionary.


2020 ◽  
Vol 501 (1) ◽  
pp. 269-280
Author(s):  
Xuheng Ding ◽  
Tommaso Treu ◽  
Simon Birrer ◽  
Adriano Agnello ◽  
Dominique Sluse ◽  
...  

ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution.


2021 ◽  
Author(s):  
Michelle Bieger ◽  
Quentin Changeat

&lt;p&gt;Retrieval tools provide a way of determining an exoplanet atmosphere's temperature structure and composition with an observed planetary spectrum, working backwards to determine the chemistry and temperature by iteratively comparing synthetic spectra that have been constructed via a forward model to the observed spectra and determining a best-fit result (Barstow and Heng, 2020). This talk will be presenting the emission and reanalysed transmission spectrum and retrieval analysis of WASP-79b, an inflated hot Jupiter first detected by Smalley et al. (2012). Previous transmission spectra of WASP-79b has been analysed in Sozten et al. (2020), Skaf et al. (2020), and Rathcke et al. (2021); all studies agreeing on detections of H2O with various confidence levels, with the latter finding moderate evidence of an H- bound-free opacity compared to iron hydride abundance found by the other studies. Using the publicly available \verb+Iraclis+ data analysis pipeline and the Bayesian atmospheric retrieval framework TauREx 3, we will be adding to the global picture of this planet by examining the Hubble Space Telescope emission spectra as captured by the Wide Field Camera 3 G141 grism (PI: David Sing, proposal ID: 14767).&amp;#160;&lt;/p&gt;


2021 ◽  
Vol 923 (2) ◽  
pp. 278
Author(s):  
S. T. Linden ◽  
A. S. Evans ◽  
K. Larson ◽  
G. C. Privon ◽  
L. Armus ◽  
...  

Abstract We present the results of a Hubble Space Telescope WFC3 near-UV and Advanced Camera for Surveys Wide Field Channel optical study into the star cluster populations of a sample of 10 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry we have derived ages, masses, and extinctions for a total of 1027 star clusters in galaxies with d L < 110 Mpc in order to avoid issues related to cluster bending. The measured cluster age distribution slope of dN / d τ ∝ τ − 0.5 + / − 0.12 is steeper than what has been observed in lower-luminosity star-forming galaxies. Further, differences in the slope of the observed cluster age distribution between inner- ( dN / d τ ∝ τ − 1.07 + / − 0.12 ) and outer-disk ( dN / d τ ∝ τ − 0.37 + / − 0.09 ) star clusters provide evidence of mass-dependent cluster destruction in the central regions of LIRGs driven primarily by the combined effect of strong tidal shocks and encounters with massive giant molecular clouds. Excluding the nuclear ring surrounding the Seyfert 1 nucleus in NGC 7469, the derived cluster mass function (CMF; dN / dM ∝ M α ) offers marginal evidence for a truncation in the power law at M t ∼ 2×106 M ⊙ for our three most cluster-rich sources, which are all classified as early stage mergers. Finally, we find evidence of a flattening of the CMF slope of dN / dM ∝ M − 1.42 ± 0.1 for clusters in late-stage mergers relative to early stage (α = −1.65 ± 0.02), which we attribute to an increase in the formation of massive clusters over the course of the interaction.


2004 ◽  
Author(s):  
Jennifer A. Turner-Valle ◽  
Joseph Sullivan ◽  
John E. Mentzell ◽  
Robert A. Woodruff

2010 ◽  
Vol 9 (4) ◽  
pp. 265-271 ◽  
Author(s):  
W.B. Sparks ◽  
M. McGrath ◽  
K. Hand ◽  
H.C. Ford ◽  
P. Geissler ◽  
...  

AbstractEuropa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes.


1999 ◽  
Vol 190 ◽  
pp. 445-445 ◽  
Author(s):  
Kenneth J. Mighell ◽  
Ata Sarajedini ◽  
Rica S. French

We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F450W (~B) and F555W (~V) of the intermediate-age populous star clusters NGC 121, NGC 339, NGC 361, NGC 416, and Kron 3 in the Small Magellanic Cloud. We use published photometry of two other SMC populous star clusters, Lindsay 1 and Lindsay 113, to investigate the age sequence of these seven star clusters in order to improve our understanding of the formation chronology of the SMC. We analyzed the V vs B–V and MV vs (B–V)o color-magnitude diagrams of these populous Small Magellanic Cloud star clusters using a variety of techniques and determined their ages, metallicities, and reddenings. These new data enable us to improve the age-metallicity relation of star clusters in the Small Magellanic Cloud. In particular, we find that a closed-box continuous star-formation model does not reproduce the age-metallicity relation adequately. However, a theoretical model punctuated by bursts of star formation is in better agreement with the observational data. The full details of this analysis are reported in Mighell, Sarajedini, & French (1998, AJ, 116, 2395).


2015 ◽  
Vol 24 (3) ◽  
Author(s):  
Guanwen Fang ◽  
Zhongyang Ma ◽  
Yang Chen ◽  
Xu Kong

AbstractUsing the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) near-infrared high-resolution imaging from the 3D-HST survey, we analyze the morphology and structure of 502 ultraluminous infrared galaxies (ULIRGs;


1994 ◽  
Vol 158 ◽  
pp. 61-69 ◽  
Author(s):  
Robert J. Hanisch ◽  
Richard L. White

The spherical aberration in the primary mirror of the Hubble Space Telescope causes more than 80% of the light from a point source to be spread into a halo of radius of 2–3 arcsec. The point spread function (PSF) is both time variant (resulting from spacecraft jitter and desorption of the secondary mirror support structure) and space variant (owing to the Cassegrain repeater optics in the Wide Field / Planetary Camera). A variety of image restoration algorithms have been utilized on HST data with some success, although optimal restorations require better modeling of the PSF and the development of efficient restoration algorithms that accommodate a spacevariant PSF. The first HST servicing mission (December 1993) will deploy a corrective optics system for the Faint Object Camera and the two spectrographs and a second generation WF/PC with internal corrective optics. As simulations demonstrate, however, the restoration algorithms developed now for aberrated images will be very useful for removing the remaining diffraction features and optimizing dynamic range in post-servicing mission data.


Sign in / Sign up

Export Citation Format

Share Document