scholarly journals The impact of stellar and AGN feedback on halo-scale baryonic and dark matter accretion in the eagle simulations

2020 ◽  
Vol 498 (2) ◽  
pp. 1668-1692 ◽  
Author(s):  
Ruby J Wright ◽  
Claudia del P Lagos ◽  
Chris Power ◽  
Peter D Mitchell

ABSTRACT We use the eagle suite of hydrodynamical simulations to analyse accretion rates (and the breakdown of their constituent channels) on to haloes over cosmic time, comparing the behaviour of baryons and dark matter (DM). We also investigate the influence of sub-grid baryon physics on halo-scale inflow, specifically the consequences of modelling radiative cooling, as well as feedback from stars and active galactic nuclei (AGNs). We find that variations in halo baryon fractions at fixed mass (particularly their circumgalactic medium gas content) are very well correlated with variations in the baryon fraction of accreting matter, which we show to be heavily suppressed by stellar feedback in low-mass haloes, Mhalo ≲ 1011.5 M⊙. Breaking down accretion rates into first infall, recycled, transfer, and merger components, we show that baryons are much more likely to be smoothly accreted than to have originated from mergers when compared to DM, finding (averaged across halo mass) a merger contribution of $\approx 6{{\ \rm per\ cent}}$ for baryons, and $\approx 15{{\ \rm per\ cent}}$ for DM at z ≈ 0. We also show that the breakdown of inflow into different channels is strongly dependent on sub-grid physics, particularly the contribution of recycled accretion (accreting matter that has been previously ejected from progenitor haloes). Our findings highlight the dual role that baryonic feedback plays in regulating the evolution of galaxies and haloes: by (i) directly removing gas from haloes, and (ii) suppressing gas inflow to haloes.

2016 ◽  
Vol 12 (S324) ◽  
pp. 237-238
Author(s):  
Dunja Fabjan ◽  
S. Planelles ◽  
S. Borgani ◽  
G. Murante ◽  
E. Rasia ◽  
...  

AbstractWe studied the imprints that feedback from Active Galactic Nuclei (AGN) leaves on the intracluster plasma during the assembly history of galaxy clusters. To this purpose we used state-of-the-art cosmological hydrodynamical simulations based on an updated version of the Tree-PM SPH GADGET-3 code, comparing three sets of simulations with different prescriptions for the physics of baryons (including AGN and/or stellar feedback). We explore the effect of these different physics, in particular AGN feedback, on IntraCluster medium (ICM) properties observed via Sunyaev-Zel’dovich (SZ) effect using an extended set of galaxy clusters (~100 clusters with M500 masses above 5 × 1013M⊙/h). Some of the main findings are that the scaling relation between the integrated SZ flux and the galaxy cluster total mass is in good accordance with several observed samples, especially for massive clusters, and does not show any clear redshift evolution, with the slope of the relation close to the theoretical one in the AGN feedback case. As for the scatter of this relation, we obtain a mild dependence on the cluster dynamical state.


Author(s):  
Mark R Lovell ◽  
Marius Cautun ◽  
Carlos S Frenk ◽  
Wojciech A Hellwing ◽  
Oliver Newton

Abstract The spatial distribution of Milky Way (MW) subhaloes provides an important set of observables for testing cosmological models. These include the radial distribution of luminous satellites, planar configurations, and the abundance of dark subhaloes whose existence or absence is key to distinguishing amongst dark matter models. We use the coco N-body simulations of cold dark matter (CDM) and 3.3 keV thermal relic warm dark matter (WDM) to predict the satellite spatial distribution in the limit that the impact of baryonic physics is minimal. We demonstrate that the radial distributions of CDM and 3.3 keV-WDM luminous satellites are identical if the minimum pre-infall halo mass to form a galaxy is >108.5 ${\, \rm M_\odot }$. The distribution of dark subhaloes is significantly more concentrated in WDM due to the absence of low mass, recently accreted substructures that typically inhabit the outer parts of a MW halo in CDM. We show that subhaloes of mass [107, 108] ${\, \rm M_\odot }$ and within 30 kpc of the centre are the stripped remnants of larger haloes in both models. Therefore their abundance in WDM is 3 × higher than one would anticipate from the overall WDM subhalo population. We estimate that differences between CDM and WDM concentration–mass relations can be probed for subhalo–stream impact parameters <2 kpc. Finally, we find that the impact of WDM on planes of satellites is likely negligible. Comprehensive comparisons with observations will require further work with high resolution, self-consistent hydrodynamical simulations.


2019 ◽  
Vol 492 (2) ◽  
pp. 2285-2307 ◽  
Author(s):  
Stijn N B Debackere ◽  
Joop Schaye ◽  
Henk Hoekstra

ABSTRACT The interpretation of upcoming weak gravitational lensing surveys depends critically on our understanding of the matter power spectrum on scales $k \lt 10\, {h\, {\rm Mpc}^{-1}}$, where baryonic processes are important. We study the impact of galaxy formation processes on the matter power spectrum using a halo model that treats the stars and gas separately from the dark matter distribution. We use empirical constraints from X-ray observations (hot gas) and halo occupation distribution modelling (stars) for the baryons. Since X-ray observations cannot generally measure the hot gas content outside r500c, we vary the gas density profiles beyond this radius. Compared with dark matter only models, we find a total power suppression of $1\, {\mathrm{per\ cent}}$ ($5\, {\mathrm{per\ cent}}$) on scales $0.2\!-\!1\, {h\, {\rm Mpc}^{-1}}$ ($0.5\!-\!2\, {h\, {\rm Mpc}^{-1}}$), where lower baryon fractions result in stronger suppression. We show that groups of galaxies ($10^{13} \lt m_{\mathrm{500c}} / (h^{-1}\, \mathrm{M}_{\odot }) \lt 10^{14}$) dominate the total power at all scales $k \lesssim 10\, {h\, {\rm Mpc}^{-1}}$. We find that a halo mass bias of $30\, {\mathrm{per\ cent}}$ (similar to what is expected from the hydrostatic equilibrium assumption) results in an underestimation of the power suppression of up to $4\, {\mathrm{per\ cent}}$ at $k=1\, {h\, {\rm Mpc}^{-1}}$, illustrating the importance of measuring accurate halo masses. Contrary to work based on hydrodynamical simulations, our conclusion that baryonic effects can no longer be neglected is not subject to uncertainties associated with our poor understanding of feedback processes. Observationally, probing the outskirts of groups and clusters will provide the tightest constraints on the power suppression for $k \lesssim 1\, {h\, {\rm Mpc}^{-1}}$.


2020 ◽  
Vol 494 (3) ◽  
pp. 3971-3997 ◽  
Author(s):  
Peter D Mitchell ◽  
Joop Schaye ◽  
Richard G Bower ◽  
Robert A Crain

ABSTRACT We present measurements of galactic outflow rates from the eagle suite of cosmological simulations. We find that gas is removed from the interstellar medium (ISM) of central galaxies with a dimensionless mass loading factor that scales approximately with circular velocity as $V_{\mathrm{c}}^{-3/2}$ in the low-mass regime where stellar feedback dominates. Feedback from active galactic nuclei causes an upturn in the mass loading for halo masses ${\gt}10^{12} \, \mathrm{M_\odot }$. We find that more gas outflows through the halo virial radius than is removed from the ISM of galaxies, particularly at low redshifts, implying substantial mass loading within the circumgalactic medium. Outflow velocities span a wide range at a given halo mass/redshift, and on average increase positively with redshift and halo mass up to $M_{200} \sim 10^{12} \, \mathrm{M_\odot }$. Outflows exhibit a bimodal flow pattern on circumgalactic scales, aligned with the galactic minor axis. We present a number of like-for-like comparisons to outflow rates from other recent cosmological hydrodynamical simulations, and show that comparing the propagation of galactic winds as a function of radius reveals substantial discrepancies between different models. Relative to some other simulations, eagle favours a scenario for stellar feedback where agreement with the galaxy stellar mass function is achieved by removing smaller amounts of gas from the ISM, but with galactic winds that then propagate and entrain ambient gas out to larger radii.


2020 ◽  
Vol 497 (2) ◽  
pp. 1508-1520 ◽  
Author(s):  
Martin P Rey ◽  
Andrew Pontzen ◽  
Oscar Agertz ◽  
Matthew D A Orkney ◽  
Justin I Read ◽  
...  

ABSTRACT We study how star formation is regulated in low-mass field dwarf galaxies ($10^5 \le M_{\star } \le 10^6 \, \mbox{M}_\mathrm{\odot }$), using cosmological high-resolution ($3 \, \mathrm{pc}$) hydrodynamical simulations. Cosmic reionization quenches star formation in all our simulated dwarfs, but three galaxies with final dynamical masses of $3 \times 10^{9} \, \mbox{M}_\mathrm{\odot }$ are subsequently able to replenish their interstellar medium by slowly accreting gas. Two of these galaxies reignite and sustain star formation until the present day at an average rate of $10^{-5} \, \mbox{M}_\mathrm{\odot } \, \text{yr}^{-1}$, highly reminiscent of observed low-mass star-forming dwarf irregulars such as Leo T. The resumption of star formation is delayed by several billion years due to residual feedback from stellar winds and Type Ia supernovae; even at z = 0, the third galaxy remains in a temporary equilibrium with a large gas content but without any ongoing star formation. Using the ‘genetic modification’ approach, we create an alternative mass growth history for this gas-rich quiescent dwarf and show how a small $(0.2\, \mathrm{dex})$ increase in dynamical mass can overcome residual stellar feedback, reigniting star formation. The interaction between feedback and mass build-up produces a diversity in the stellar ages and gas content of low-mass dwarfs, which will be probed by combining next-generation H i and imaging surveys.


2020 ◽  
Vol 644 ◽  
pp. A170
Author(s):  
Joseph Kuruvilla ◽  
Nabila Aghanim ◽  
Ian G. McCarthy

We explored the impact of baryonic effects (namely stellar and active galactic nuclei feedback) on the moments of pairwise velocity using the Illustris-TNG, EAGLE, cosmo-OWLS, and BAHAMAS suites of cosmological hydrodynamical simulations. The assumption that the mean pairwise velocity of the gas component follows that of the dark matter is studied here at small separations, and we find that even at pair separations of 10–20 h−1Mpc, there is a 4–5% velocity bias. At smaller separations, it gets larger with varying strength depending on the sub-grid prescription. By isolating different physical processes, our findings suggest that the large-scale velocity bias is mainly driven by stellar rather than active galactic nuclei feedback. If unaccounted for, this velocity offset could possibly bias cosmological constraints from the kinetic Sunyaev-Zel’dovich effect in future cosmic microwave background (CMB) surveys. Furthermore, we examined how the first and the second moment of the pairwise velocity are affected by both the baryonic and the neutrino free-streaming effects for both the matter and gas components. For both moments, we were able to disentangle the effects of baryonic processes from those of massive neutrinos; and for pair separations below 20 h−1Mpc, we find that these moments of the pairwise velocity decrease with increasing neutrino mass. Our work thus sets out a way in which the pairwise velocity statistics can be utilised to constrain the summed mass of neutrinos from future CMB surveys and peculiar velocity surveys.


2019 ◽  
Vol 15 (S359) ◽  
pp. 185-187
Author(s):  
Fiorella L. Polles

AbstractMulti-phase filamentary structures surrounding giant elliptical galaxies at the center of cool-core clusters, the Brightest Cluster Galaxies (BCGs), have been detected from optical to submillimeter wavelengths. The source of the ionisation in the filaments is still debated. Studying the excitation of these structures is key to our understanding of Active Galactic Nuclei (AGN) feedback in general, and more precisely of the impact of environmental and local effects on star formation. One possible contributor to the excitation of the filaments is the thermal radiation from the cooling of the hot plasma surrounding the BCGs, the so-called cooling flow.


Author(s):  
L. Spinoglio ◽  
A. Alonso-Herrero ◽  
L. Armus ◽  
M. Baes ◽  
J. Bernard-Salas ◽  
...  

AbstractIR spectroscopy in the range 12–230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA’s large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z ~ 6.


2021 ◽  
Vol 2021 (11) ◽  
pp. 059
Author(s):  
Z. Stuchlík ◽  
J. Vrba

Abstract Recently introduced exact solution of the Einstein gravity coupled minimally to an anisotropic fluid representing dark matter can well represent supermassive black holes in galactic nuclei with realistic distribution of dark matter around the black hole, given by the Hernquist-like density distribution. For these fluid-hairy black hole spacetimes, properties of the gravitational radiation, quasinormal ringing, and optical phenomena were studied, giving interesting results. Here, using the range of physical parameters of these spacetimes allowing for their relevance in astrophysics, we study the epicyclic oscillatory motion of test particles in these spacetimes. The frequencies of the orbital and epicyclic motion are applied in the epicyclic resonance variant of the geodesic model of quasiperiodic oscillations (QPOs) observed in active galactic nuclei to demonstrate the possibility to solve the cases where the standard vacuum black hole spacetimes are not allowing for explanation of the observed data. We demonstrate that the geodesic model can explain the QPOs observed in most of the active galactic nuclei for the fluid-hairy black holes with reasonable halo parameters.


2014 ◽  
Vol 10 (S312) ◽  
pp. 139-140
Author(s):  
Fu-Guo Xie

AbstractSignificant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.


Sign in / Sign up

Export Citation Format

Share Document