scholarly journals Dust Transport in Protoplanetary Disks with Wind-driven Accretion

Author(s):  
Zitao Hu ◽  
Xue-Ning Bai

Abstract It has recently been shown that the inner region of protoplanetary disks (PPDs) is governed by wind-driven accretion, and the resulting accretion flow showing complex vertical profiles. Such complex flow structures are further enhanced due to the Hall effect, especially when the background magnetic field is aligned with disk rotation. We investigate how such flow structures impact global dust transport via Monte-Carlo simulations, focusing on two scenarios. In the first scenario, the toroidal magnetic field is maximized in the miplane, leading to accretion and decretion flows above and below. In the second scenario, the toroidal field changes sign across the midplane, leading to an accretion flow at the disk midplane, with decretion flows above and below. We find that in both cases, the contribution from additional gas flows can still be accurately incorporated into the advection-diffusion framework for vertically-integrated dust transport, with enhanced dust radial (pseudo-)diffusion up to an effective αeff ∼ 10−2 for strongly coupled dust, even when background turbulence is weak α < 10−4. Dust radial drift is also modestly enhanced in the second scenario. We provide a general analytical theory that accurately reproduces our simulation results, thus establishing a framework to model global dust transport that realistically incorporates vertical gas flow structures. We also note that the theory is equally applicable to the transport of chemical species.

Author(s):  
Steffen Jebauer ◽  
Justyna Czerwinska

This paper presents various flow structures related to velocity slip and temperature jump in very low Reynolds number gas flow. The structures differ significantly from the ones observed in continuum regime for laminar flow, especially if the geometry has complex structure, which is very often the case in microfluidic devices. We are modelling the flow as a continuum Navier-Stokes gas flow with additional velocity slip and temperature jump boundary conditions for curved surfaces for slip flows with Knudsen numbers Kn < 0.1. For complex channel geometries with obstacles and curved walls vortex patterns are observed that are related to the thermal stress slip flow. This type of flow is induced only when non-uniform temperature distributions inside flow domains are present. The investigated geometries consist of one or more cylinder walls with diameters of up to a few 100 μm placed inside of confined microchannels, with all setups being two-dimensional. In gaseous microdevices the resulting complex flow patterns can be utilised to enhance mixing or heat transfer.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Ivan A. Ivanov ◽  
V. O. Ustyuzhanin ◽  
A. V. Sudnikov ◽  
A. Inzhevatkina

A plasma gun for forming a plasma stream in the open magnetic mirror trap with additional helicoidal field SMOLA is described. The plasma gun is an axisymmetric system with a planar circular hot cathode based on lanthanum hexaboride and a hollow copper anode. The two planar coils are located around the plasma source and create a magnetic field of up to 200 mT. The magnetic field forms the magnetron configuration of the discharge and provides a radial electric insulation. The source typically operates with a discharge current of up to 350 A in hydrogen. Plasma parameters in the SMOLA device are Ti ~ 5 eV, Te ~ 5–40 eV and ni ~ (0.1–1)  × 1019 m−3. Helium plasma can also be created. The plasma properties depend on the whole group of initial technical parameters: the cathode temperature, the feeding gas flow, the anode-cathode supply voltage and the magnitude of the cathode magnetic insulation.


1977 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
N. F. Cramer

The parametric excitation of slow, intermediate (Alfvén) and fast magneto-acoustic waves by a modulated spatially non-uniform magnetic field in a plasma with a finite ratio of gas pressure to magnetic pressure is considered. The waves are excited in pairs, either pairs of the same mode, or a pair of different modes. The growth rates of the instabilities are calculated and compared with the known result for the Alfvén wave in a zero gas pressure plasma. The only waves that are found not to be excited are the slow plus fast wave pair, and the intermediate plus slow or fast wave pair (unless the waves have a component of propagation direction perpendicular to both the background magnetic field and the direction of non-uniformity of the field).


2010 ◽  
Vol 129-131 ◽  
pp. 692-696
Author(s):  
Jian Bing Meng ◽  
Xiao Juan Dong ◽  
Chang Ning Ma

A mathematical model was developed to describe the oscillating amplitude of the plasma arc injected transverse to an external transverse alternating magnetic field. The characteristic of plasma arc under the external transverse alternating magnetic field imposed perpendicular to the plasma current was discussed. The effect of processing parameters, such as flow rate of working gas, arc current, magnetic flux density and the standoff from the nozzle to the workpiece, on the oscillation of plasma arc were also analyzed. The results show that it is feasible to adjust the shape of the plasma arc by the transverse alternating magnetic field, which expands the region of plasma arc thermal treatment upon the workpiece. Furthermore, the oscillating amplitude of plasma arc decreases with decrease of the magnetic flux density. Under the same magnetic flux density, more gas flow rate, more arc current, and less standoff cause the oscillating amplitude to decrease. The researches have provided a deeper understanding of adjusting of plasma arc characteristics.


2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


1990 ◽  
Vol 44 (2) ◽  
pp. 361-375 ◽  
Author(s):  
Andrew N. Wright

In a cold plasma the wave equation for solely compressional magnetic field perturbations appears to decouple in any surface orthogonal to the background magnetic field. However, the compressional fields in any two of these surfaces are related to each other by the condition that the perturbation field b be divergence-free. Hence the wave equations in these surfaces are not truly decoupled from one another. If the two solutions happen to be ‘matched’ (i.e. V.b = 0) then the medium may execute a solely compressional oscillation. If the two solutions are unmatched then transverse fields must evolve. We consider two classes of compressional solutions and derive a set of criteria for when the medium will be able to support pure compressional field oscillations. These criteria relate to the geometry of the magnetic field and the plasma density distribution. We present the conditions in such a manner that it is easy to see if a given magnetoplasma is able to executive either of the compressional solutions we investigate.


2018 ◽  
Vol 33 (25) ◽  
pp. 1850144
Author(s):  
Maryam Gholizadeh Arashti ◽  
Majid Dehghani

The Schwinger effect in the presence of instantons and background magnetic field was considered to study the dependence of critical electric field on instanton density and magnetic field using AdS/CFT conjecture. The gravity side is the near horizon limit of D3[Formula: see text]D(−[Formula: see text]1) background with electric and magnetic fields on the brane. Our approach is based on the potential analysis for particle–antiparticle pair at zero and finite temperatures, where the zero temperature case is a semi-confining theory. We find that presence of instantons suppresses the pair creation effect, similar to a background magnetic field. Then, the production rate will be obtained numerically using the expectation value of circular Wilson loop. The obtained production rate in a magnetic field is in agreement with previous results.


2001 ◽  
Vol 17 (3) ◽  
pp. 131-138
Author(s):  
Feng Chin Tsai ◽  
Rong Fung Huang

AbstractThe effects of blockage and swirl on the macro flow structures of the annular jet past a circular disc are experimentally studied through the time-averaged streamline patterns. In the blockage-effect regime, the flows present multiple modes, single bubble, dual rings, vortex breakdown, and triple rings, in different regimes of blockage ratio and swirl number. The topological models of the flow structures are proposed and discussed according to the measured flow fields to manifest the complex flow structures. The single bubble is a closed recirculation bubble with a stagnation point on the central axis. The dual-ring flow is an open-top recirculsation zone, in which a pair of counter-rotating vortex rings exists in the near wake. The fluids in the dual rings are expelled downstream through a central jet-like swirling flow. A vortex breakdown may occur in the central jet-like swirling flow if the exit swirl number exceeds critical values. When the vortex breakdown interacts with the dual rings, a complex triple-ring flow structure forms. Axial distributions of the local swirl number are presented and discussed. The local swirl number increases with the increase of the exit swirl number and attains the maximum in the dual-ring mode. At large exit swirl numbers where the vortex breakdown occurs, the local swirl number decreases drastically to a low value.


Sign in / Sign up

Export Citation Format

Share Document