Development of a simulator of the SIMBIOSYS suite onboard the BepiColombo mission

2019 ◽  
Vol 491 (2) ◽  
pp. 1673-1689 ◽  
Author(s):  
A Slemer ◽  
M Zusi ◽  
E Simioni ◽  
V Da Deppo ◽  
C Re ◽  
...  

ABSTRACT BepiColombo is the fifth cornerstone mission of the European Space Agency (ESA) dedicated to study the Mercury planet. The BepiColombo spacecraft comprises two science modules: the Mercury Planetary Orbiter (MPO) realized by ESA and the Mercury Magnetospheric Orbiter provided by the Japan Aerospace Exploration Agency. The MPO is composed by 11 instruments, including the ‘Spectrometer and Imagers for MPO BepiColombo Integrated Observatory System’ (SIMBIOSYS). The SIMBIOSYS suite includes three optical channels: a Stereoscopic Imaging Channel, a High Resolution Imaging Channel, and a Visible and near Infrared Hyperspectral Imager. SIMBIOSYS will characterize the hermean surface in terms of surface morphology, volcanism, global tectonics, and chemical composition. The aim of this work is to describe a tool for the radiometric response prediction of the three SIMBIOSYS channels. Given the spectral properties of the surface, the instrument characteristics, and the geometrical conditions of the observation, the realized SIMBIOSYS simulator is capable of estimating the expected signal and integration times for the entire mission lifetime. In the simulator the spectral radiance entering the instrument optical apertures has been modelled using a Hapke reflectance model implementing the parameters expected for the hermean surface. The instrument performances are simulated by means of calibrated optical and detectors responses. The simulator employs the SPICE (Spacecraft, Planet, Instrument, C-matrix, Environment) toolkit software, which allows us to know for each epoch the exact position of the MPO with respect to the planet surface and the Sun.

2021 ◽  
Author(s):  
Mikael Granvik ◽  
Tuomas Lehtinen ◽  
Andrea Bellome ◽  
Joan-Pau Sánchez

<div class="page" title="Page 1"> <div class="layoutArea"> <div class="column"> <p>Icarus is a mission concept designed to record the activity of an asteroid during a close encounter with the Sun. The primary science goal of the mission is to unravel the nontrivial mechanism(s) that destroy asteroids on orbits with small perihelion distances. Understanding the destruction mechanism(s) allows us to constrain the bulk composition and interior structure of asteroids in general. The Icarus mission does not only aim to achieve its science goals but also functions as a technical demonstration of what a low-cost space mission can do. The proposed space segment will include a single spacecraft capable of surviving and operating in the harsh environment near the Sun. The spacecraft design relies on the heritage of missions such as Rosetta, MESSENGER, Parker Solar Probe, BepiColombo, and Solar Orbiter. The spacecraft will rendezvous with an asteroid during its perihelion passage and records the changes taking place on the asteroid’s surface. The primary scientific payload has to be capable of imaging the asteroid’s surface in high resolution using visual and near-infrared channels as well as collecting and analyzing particles that are ejected from the asteroid. The payload bay also allows for additional payloads relating to, for example, solar research. The Icarus spacecraft and the planned payloads have high technology readiness levels and the mission is aimed to fit the programmatic and cost constraints of the F1 mission (Comet Interceptor) by the European Space Agency. Considering the challenging nature of the Icarus trajectory and the fact that the next F-class mission opportunity (F2) is yet to be announced, we conclude that Icarus is feasible as an F-class mission when certain constraints such as a suitable launch configuration are met (e.g., if EnVision is selected as M5). A larger mission class, such as the M class by the European Space Agency, would be feasible in all circumstances.</p> </div> </div> </div>


2020 ◽  
Author(s):  
Alfredo Falconieri ◽  
Francesco Marchese ◽  
Giuseppe Mazzeo ◽  
Nicola Pergola ◽  
Valerio Tramutoli

<p>RSTVOLC is a multi-temporal algorithm developed for detecting volcanic hotspots that was successfully used to monitor active volcanoes located in different geographic areas exploiting both polar and geostationary satellite data. The algorithm runs operationally at the Institute of Methodologies for Environmental Analysis (IMAA) to monitor Italian volcanoes in near-real time by means of Advanced Very-High-Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data. In this study, we assess the possible RSTVOLC implementation on data from the Sea and Land Surface Temperature Radiometer (SLSTR). The latter is a new generation sensor flying onboard the ESA (European Space Agency) Sentinel-3 mission, offering some spectral channels in the infrared bands particularly suited to identify high temperature surfaces such as lava flows. Here, we verify the RSTVOLC implementation on SLSTR data despite the absence of a multiannual time series of satellite records, by using synthetic spectral reference fields. Results achieved by investigating recent eruptions of Mt. Etna and Stromboli (Italy) volcanoes are presented and discussed.</p>


2020 ◽  
Author(s):  
Pepijn Veefkind ◽  
Ilse Aben ◽  
Angelika Dehn ◽  
Quintus Kleipool ◽  
Diego Loyola ◽  
...  

<p>The Copernicus Sentinel 5 Precursor (S5P) is the first of the Sentinel satellites dedicated to the observation of the atmospheric composition, for climate, air quality and ozone monitoring applications. The payload of S5P is TROPOMI (TROPOspheric Monitoring Instrument), a spectrometer covering spectral bands in ultraviolet, visible, near infrared and shortwave infrared, which was developed by The Netherlands in cooperation with the European Space Agency (ESA). TROPOMI has a wide swath of 2600 km, enabling daily global coverage, in combination with a high spatial resolution of about 3.5 x 5.5 km<sup>2</sup> (7 x 5.5 km<sup>2</sup> for the SWIR band).</p><p>S5P was successfully launched on 13 October 2017 and following a six-month commissioning phase, the operational data stream started at the end of April 2018. All of the TROPOMI operational data products have been released, with the exception of the ozone profile, which is planned to become available with the next major release[AR1]  of the Level 1B data. In addition to the operational data products, new research products are also being developed.</p><p>In this contribution, the status of TROPOMI and its data products will be presented. Results for observations of recent events will be provided, along with an outlook on the next release of the data products.</p><div> <div> <div> </div> </div> </div>


2017 ◽  
Vol 4 (10) ◽  
pp. 170785 ◽  
Author(s):  
J. C. Bridges ◽  
J. Clemmet ◽  
M. Croon ◽  
M. R. Sims ◽  
D. Pullan ◽  
...  

The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels—which may have been caused by damage during landing—would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing.


2018 ◽  
Vol 11 (1) ◽  
pp. 409-427 ◽  
Author(s):  
Diego G. Loyola ◽  
Sebastián Gimeno García ◽  
Ronny Lutz ◽  
Athina Argyrouli ◽  
Fabian Romahn ◽  
...  

Abstract. This paper presents the operational cloud retrieval algorithms for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Space Agency Sentinel-5 Precursor (S5P) mission scheduled for launch in 2017. Two algorithms working in tandem are used for retrieving cloud properties: OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks). OCRA retrieves the cloud fraction using TROPOMI measurements in the ultraviolet (UV) and visible (VIS) spectral regions, and ROCINN retrieves the cloud top height (pressure) and optical thickness (albedo) using TROPOMI measurements in and around the oxygen A-band in the near infrared (NIR). Cloud parameters from TROPOMI/S5P will be used not only for enhancing the accuracy of trace gas retrievals but also for extending the satellite data record of cloud information derived from oxygen A-band measurements, a record initiated with the Global Ozone Monitoring Experiment (GOME) on board the second European Remote-Sensing Satellite (ERS-2) over 20 years ago. The OCRA and ROCINN algorithms are integrated in the S5P operational processor UPAS (Universal Processor for UV/VIS/NIR Atmospheric Spectrometers), and we present here UPAS cloud results using the Ozone Monitoring Instrument (OMI) and GOME-2 measurements. In addition, we examine anticipated challenges for the TROPOMI/S5P cloud retrieval algorithms, and we discuss the future validation needs for OCRA and ROCINN.


2018 ◽  
Vol 11 (1) ◽  
pp. 473-487 ◽  
Author(s):  
Amirmahdi Zarboo ◽  
Stefan Bender ◽  
John P. Burrows ◽  
Johannes Orphal ◽  
Miriam Sinnhuber

Abstract. We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard the European Space Agency Envisat satellite observes upwelling radiances in limb-viewing geometry during its special MLT mode over the range 50–150 km. In this study we use the limb observations in the visible (595–811 nm) and near-infrared (1200–1360 nm) bands. We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VERs of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) emissions show additional high values at polar latitudes during winter and spring. These additional high values are presumably related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSWs). Accurate measurements of the O2(1Σ) and O2(1Δ) airglow, provided that the mechanism of their production is understood, yield valuable information about both the chemistry and dynamics in the MLT. For example, they can be used to infer the amounts and distribution of ozone, solar heating rates, and temperature in the MLT.


2020 ◽  
Author(s):  
Jan Jehlicka ◽  
Kateřina Němečková ◽  
Adam Culka

<p>Terrestrial detection of biomarkers in various mineral matrices using Raman spectrometers including field deploying of miniature instrumentation in Mars-analogue sites can be seen as a training for next Martian missions. In fact, both the European Space Agency (Exomars) and North American Space Agency (Mars 2020) robotic rovers will include Raman spectrometers. Feasibility of detecting biomarkers of extremophilic cyanobacteria and algae (pigments, osmotic solutes and lipids) using Raman microspectrometry was reviewed previously. Here the idea is to show - firstly how portable Raman instrumentation permits to detect carotenoids fast and onsite under field conditions. Secondly, laboratory microspectrometric investigations allow to obtain more detailed information about spatial distribution of pigments originating from microorganisms.</p><p>Macrocrystalline gypsum layers and aggregates are well-known from Tertiary series in Sicily and Eastern Poland. In Southern Sicily gypsum sediments accumulated during Messinian crisis (Late Miocene) are outcroping and were investigated near Scala dei Turchi, Torre Salsa and Siculiana Marina. Polish Tertiary (Badenian, Middle Miocene) examples of gypsum colonisations of decimetre long outcropping crystals were studied near Chotel Czerwony, Skorocice and Chwalowice. Miniature portable Raman spectrometers equipped with green lasers allowing recording of resonance Raman signals of carotenoids are evaluated here. Possibilities of collecting spectra of carotenoids under non-resonant conditions using a portable sequentially shifted Raman spectrometer (785 and 853nm lasers) are shown as well. Observed shifts of positions of Raman features of carotenoids between gypsum samples (and sites) are discussed and critically evaluated. In addition, acquired data are compared to data obtained through laboratory Raman microspectrometric investigations. Selected zones of microbial colonisations of few types of gypsum are described from the point of view of the presence of algae and cyanobacteria. Pigments are detected through conventional Raman microspectrometric measurements. Carotenoids were documented in major part of samples (common Raman bands at around 1525, 1157, and 1004 cm<sup>−1</sup>). Additionally, Raman spectra of other pigments were recorded in several zones using near infrared excitation (785 nm): chlorophyll (1151, 1327, 1287, 1184, 917, and 745 cm<sup>−1</sup>), scytonemin (1593, 1152, 1438, and 1173 cm<sup>−1</sup>) and phycobiliproteins (1633, 1584, 1371, 1236, 813, and 667 cm<sup>−1</sup>).</p><p>Portable instrumentation permits detection of carotenoids in gypsum fast and onsite under field conditions. Raman microspectrometric investigations of colonisations allow to gather detailed information about pigment distribution in micrometric zones of gypsum samples.</p>


2019 ◽  
Vol 16 (16) ◽  
pp. 3147-3164 ◽  
Author(s):  
James Brennan ◽  
Jose L. Gómez-Dans ◽  
Mathias Disney ◽  
Philip Lewis

Abstract. Quantitative information on the error properties of global satellite-derived burned area (BA) products is essential for evaluating the quality of these products, e.g. against modelled BA estimates. We estimate theoretical uncertainties for three widely used global satellite-derived BA products using a multiplicative triple collocation error model. The approach provides spatially unique uncertainties at 1∘ for the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 burned area product (MCD64), the MODIS Collection 5.1 (MCD45) product, and the European Space Agency (ESA) Climate Change Initiative Fire product version 5.0 (FireCCI50) for 2001–2013. The uncertainties on mean global burned area for three products are 3.76±0.15×106 km2 for MCD64, 3.70±0.17×106 km2 for FireCCI50, and 3.31±0.18×106 km2 for MCD45. These correspond to relative uncertainties of 4 %–5.5 % and also indicate previous uncertainty estimates to be underestimated. Relative uncertainties are 8 %–10 % in Africa and Australia, for example, and larger in regions with less annual burned area. The method provides uncertainties that are likely to be more consistent with modelling and data analysis studies due to their spatially explicit properties. These properties are also intended to allow spatially explicit validation of current burned area products.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Koji Osumi

<p><strong>Abstract.</strong> As many studies which detect land cover changes using satellite imagery have been conducted previously; this study uses satellite imagery from Sentinel-2, which was launched by European Space Agency (ESA) in 2015. The main characteristics of Sentinel-2 are: a 10&amp;thinsp;m spatial resolution in visible and Near-infrared (NIR) bands, a revisit frequency of 5 days based on combining Sentinel-2A and Sentinel-2B, and a free and open data policy. Using bands 4 and 8 of Sentinel-2, NDVI is calculated to assess whether the target being observed contains live green vegetation. The difference was calculated by subtracting NDVI of one day from another. Changes from vegetation to built-up areas can be detected via the changes in NDVI. However, automatically computing land cover changes generates errors under present circumstances. In order to detect land cover change accurately, human review is required. This study focuses on how NDVI can assist analysts in quantifying land cover change. As a result of the analysis, land cover changes were extracted by differencing NDVI images of 2 periods, but some errors arose in the places where land cover did not change but NDVI fluctuated owing to other reasons. I show the land cover changes which were detected, the places where it is difficult to detect the change, and methods to reduce the errors. Abstracts</p>


2018 ◽  
Vol 7 (6) ◽  
pp. 353-364
Author(s):  
Maurice te Plate ◽  
Brian O’Sullivan ◽  
Pierre Ferruit ◽  
David Lee ◽  
Martyn Wells ◽  
...  

Abstract The James Webb Space Telescope (JWST) is frequently referred to as the follow-on mission to the Hubble Space Telescope (HST). The ‘Webb’ will be the biggest space telescope ever built and is expected to enable astounding new science. The observatory comprises a 6.5-m-diameter telescope with a segmented primary mirror and four high-performance optical science instruments. The JWST has mostly been optimized to work in the near- (0.6–5.0 μm) and mid-infrared (5.0–29 μm) wavelength regions. The project is a strong international partnership led by the National Aeronautics and Space Administration (NASA) with contributions from the European Space Agency (ESA) and the Canadian Space Agency (CSA). The observatory is currently scheduled for launch in early 2021 from Kourou, French Guyana, by an ESA-provided Ariane 5 rocket. This paper will focus on the European optical contribution to the mission, which mainly consists of two highly advanced optical science instruments: The multi-object near-infrared spectrograph (NIRSpec) and the mid-infrared instrument (MIRI). The opto-mechanical design considerations and the realization of both instruments will be described, and we will conclude with a short JWST project status report and future outlook.


Sign in / Sign up

Export Citation Format

Share Document