Assessment of Mutations Induced by Cold Atmospheric Plasma Jet Treatment Relative to Known Mutagens in Escherichia coli

Mutagenesis ◽  
2021 ◽  
Author(s):  
Bethany L Patenall ◽  
Hollie J Hathaway ◽  
Maisem Laabei ◽  
Amber E Young ◽  
Naing T Thet ◽  
...  

Abstract The main bactericidal components of cold atmospheric plasma (CAP) are thought to be reactive oxygen and nitrogen species (RONS) and UV radiation, both of which have the capacity to cause DNA damage and mutations. Here, the mutagenic effects of CAP on Escherichia coli were assessed in comparison to X- and UV-irradiation. DNA damage and mutagenesis were screened for using a diffusion-based DNA fragmentation assay and modified Ames test respectively. Mutant colonies obtained from the latter were quantitated and sequenced. CAP was found to elicit a similar mutation spectrum to X-irradiation, that did not resemble that for UV implying that CAP produced RONS are more likely the mutagenic component of CAP. CAP treatment was also shown to promote resistance to the antibiotic ciprofloxacin. Our data suggest that CAP treatment has mutagenic effects that may have important phenotypic consequences.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hom Bahadur Baniya ◽  
Rajesh Prakash Guragain ◽  
Gobinda Prasad Panta ◽  
Santosh Dhungana ◽  
Ganesh Kuwar Chhetri ◽  
...  

Cold plasma-liquid interaction becomes a growing interdisciplinary area of research involving plasma physics, fluid science, and chemistry. Plasma-liquid interaction has gained more interest over the last many years due to its potential applications in different fields. Cold atmospheric plasma jet is an emerging technology for surface drinking water treatment to improve quality and surface modification that is chemical-free and eco-friendly. Cold plasma treatment of water samples results in changes in turbidity, pH, and conductivity and in the formation of reactive oxygen and nitrogen species (RONS). As a result, plasma-activated water has a different chemical composition than water and can serve as an alternative technique for microbial disinfection. CAPJ has been generated by a high voltage 5 kV and a high frequency 19.56 kHz power supply. The discharge has been characterized by an optical method. To characterize the cold atmospheric pressure argon plasma jet, discharge plume temperature, and electron rotational and vibrational temperature have been determined. Cold atmospheric argon plasma jet produced at atmospheric condition contains high energetic electrons, ions, UV radiation, reactive oxygen, and nitrogen species named as cold plasma which has a wide range of applications in the biomedical industry, as well as in water treatment. Nowadays, researches have been carried out on ozonation through plasma jet interaction with surface drinking water. In this paper, we compare the change in physical and chemical parameters of surface water used for drinking purposes. The significant change in the physical parameters such as pH, turbidity, and electrical conductivity was studied. In addition, the significant changes in the concentration and absorbance of nitrate, ferrous, and chromium ions with respect to treatment time were studied. Our results showed that plasma jet interaction with surface drinking water samples can be useful for the improvement of water quality and an indicator for which reactive species play an important role in plasma sterilization.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 249
Author(s):  
Zhitong Chen ◽  
Richard Obenchain ◽  
Richard E. Wirz

Conventional plasma jets for biomedical applications tend to have several drawbacks, such as high voltages, high gas delivery, large plasma probe volume, and the formation of discharge within the organ. Therefore, it is challenging to employ these jets inside a living organism’s body. Thus, we developed a single-electrode tiny plasma jet and evaluated its use for clinical biomedical applications. We investigated the effect of voltage input and flow rate on the jet length and studied the physical parameters of the plasma jet, including discharge voltage, average gas and subject temperature, and optical emissions via spectroscopy (OES). The interactions between the tiny plasma jet and five subjects (de-ionized (DI) water, metal, cardboard, pork belly, and pork muscle) were studied at distances of 10 mm and 15 mm from the jet nozzle. The results showed that the tiny plasma jet caused no damage or burning of tissues, and the ROS/RNS (reactive oxygen/nitrogen species) intensity increased when the distance was lowered from 15 mm to 10 mm. These initial observations establish the tiny plasma jet device as a potentially useful tool in clinical biomedical applications.


2013 ◽  
Vol 10 (8) ◽  
pp. 706-713 ◽  
Author(s):  
Sander Bekeschus ◽  
Kai Masur ◽  
Julia Kolata ◽  
Kristian Wende ◽  
Anke Schmidt ◽  
...  

2019 ◽  
Vol 47 (11) ◽  
pp. 4848-4860 ◽  
Author(s):  
Donghai Li ◽  
Guiling Li ◽  
Jing Li ◽  
Zhi-Qiang Liu ◽  
Xuman Zhang ◽  
...  

2020 ◽  
Vol 24 (4) ◽  
pp. 1465-1477 ◽  
Author(s):  
Yang Yang ◽  
Miao Zheng ◽  
Yang Yang ◽  
Jing Li ◽  
Yong-Fei Su ◽  
...  

2019 ◽  
Vol 8 (11) ◽  
pp. 1930 ◽  
Author(s):  
Bih-Show Lou ◽  
Chih-Ho Lai ◽  
Teng-Ping Chu ◽  
Jang-Hsing Hsieh ◽  
Chun-Ming Chen ◽  
...  

Using the Taguchi method to narrow experimental parameters, the antimicrobial efficiency of a cold atmospheric plasma jet (CAPJ) treatment was investigated. An L9 array with four parameters of CAPJ treatments, including the application voltage, CAPJ-sample distance, argon (Ar) gas flow rate, and CAPJ treatment time, were applied to examine the antimicrobial activity against Escherichia coli (E. coli). CAPJ treatment time was found to be the most influential parameter in its antimicrobial ability by evaluation of signal to noise ratios and analysis of variance. 100% bactericidal activity was achieved under the optimal bactericidal activity parameters including the application voltage of 8.5 kV, CAPJ-sample distance of 10 mm, Ar gas flow rate of 500 sccm, and CAPJ treatment time of 300 s, which confirms the efficacy of the Taguchi method in this design. In terms of the mechanism of CAPJ’s antimicrobial ability, the intensity of hydroxyl radical produced by CAPJ positively correlated to its antimicrobial efficiency. The CAPJ antimicrobial efficiency was further evaluated by both DNA double-strand breaks analysis and scanning electron microscopy examination of CAPJ treated bacteria. CAPJ destroyed the cell wall of E. coli and further damaged its DNA structure, thus leading to successful killing of bacteria. This study suggests that optimal conditions of CPAJ can provide effective antimicrobial activity and may be grounds for a novel approach for eradicating bacterial infections.


2020 ◽  
Vol 17-18 ◽  
pp. 100098 ◽  
Author(s):  
Mohamed Fofana ◽  
Julio Buñay ◽  
Florian Judée ◽  
Silvère Baron ◽  
Sébastien Menecier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document