Effect of Cold Atmospheric Plasma on Inactivation of Escherichia coli and Physicochemical Properties of Apple, Orange, Tomato Juices, and Sour Cherry Nectar

2017 ◽  
Vol 11 (2) ◽  
pp. 334-343 ◽  
Author(s):  
Beyhan Gunaydin Dasan ◽  
Ismail Hakki Boyaci
Mutagenesis ◽  
2021 ◽  
Author(s):  
Bethany L Patenall ◽  
Hollie J Hathaway ◽  
Maisem Laabei ◽  
Amber E Young ◽  
Naing T Thet ◽  
...  

Abstract The main bactericidal components of cold atmospheric plasma (CAP) are thought to be reactive oxygen and nitrogen species (RONS) and UV radiation, both of which have the capacity to cause DNA damage and mutations. Here, the mutagenic effects of CAP on Escherichia coli were assessed in comparison to X- and UV-irradiation. DNA damage and mutagenesis were screened for using a diffusion-based DNA fragmentation assay and modified Ames test respectively. Mutant colonies obtained from the latter were quantitated and sequenced. CAP was found to elicit a similar mutation spectrum to X-irradiation, that did not resemble that for UV implying that CAP produced RONS are more likely the mutagenic component of CAP. CAP treatment was also shown to promote resistance to the antibiotic ciprofloxacin. Our data suggest that CAP treatment has mutagenic effects that may have important phenotypic consequences.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Melina E. Martínez-Barrera ◽  
Jaime Bustos Martinez ◽  
Leonor Sánchez-Pérez ◽  
Aída Hamdan-Partida ◽  
A Enrique Acosta-Gio

To evaluate the effect of sub-lethal exposure to cold atmospheric plasma (CAP) on their antibiotic resistance, Methicillin Resistant Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Streptococcus mutans, and Candida albicans were exposed in vitro to a commercially available CAP. This antimicrobial CAP inhibited growth but changed survivors’ antibiotic resistance.


2019 ◽  
Vol 60 (4) ◽  
pp. e201800106 ◽  
Author(s):  
Gholamreza Asadollahfardi ◽  
Melika Khandan ◽  
Shiva Homayoun Aria

LWT ◽  
2021 ◽  
pp. 111898
Author(s):  
Cid R. González-González ◽  
Olaoniye Labo-Popoola ◽  
Gonzalo Delgado-Pando ◽  
Katerina Theodoridou ◽  
Olena Doran ◽  
...  

2018 ◽  
Vol 18 (6) ◽  
pp. 784-804 ◽  
Author(s):  
Georg Bauer

Background: Application of cold atmospheric plasma to medium generates “plasma-activated medium” that induces apoptosis selectively in tumor cells and that has an antitumor effect in vivo. The underlying mechanisms are not well understood. Objective: Elucidation of potential chemical interactions within plasma-activated medium and of reactions of medium components with specific target structures of tumor cells should allow to define the active principle in plasma activated medium. Methods: Established knowledge of intercellular apoptosis-inducing reactive oxygen/nitrogen species-dependent signaling and its control by membrane-associated catalase and SOD was reviewed. Model experiments using extracellular singlet oxygen were analyzed with respect to catalase inactivation and their relevance for the antitumor action of cold atmospheric plasma. Potential interactions of this tumor cell-specific control system with components of plasma-activated medium or its reaction products were discussed within the scope of the reviewed signaling principles. Results: None of the long-lived species found in plasma-activated medium, such as nitrite and H2O2, nor OCl- or .NO seemed to have the potential to interfere with catalase-dependent control of apoptosis-inducing signaling of tumor cells when acting alone. However, the combination of H2O2 and nitrite might generate peroxynitrite. The protonation of peroxnitrite to peroxynitrous acid allows for the generation of hydroxyl radicals that react with H2O2, leading to the formation of hydroperoxide radicals. These allow for singlet oxygen generation and inactivation of membrane-associated catalase through an autoamplificatory mechanism, followed by intercellular apoptosis-inducing signaling. Conclusion: Nitrite and H2O2 in plasma-activated medium establish singlet oxygen-dependent interference selectively with the control system of tumor cells.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 249
Author(s):  
Zhitong Chen ◽  
Richard Obenchain ◽  
Richard E. Wirz

Conventional plasma jets for biomedical applications tend to have several drawbacks, such as high voltages, high gas delivery, large plasma probe volume, and the formation of discharge within the organ. Therefore, it is challenging to employ these jets inside a living organism’s body. Thus, we developed a single-electrode tiny plasma jet and evaluated its use for clinical biomedical applications. We investigated the effect of voltage input and flow rate on the jet length and studied the physical parameters of the plasma jet, including discharge voltage, average gas and subject temperature, and optical emissions via spectroscopy (OES). The interactions between the tiny plasma jet and five subjects (de-ionized (DI) water, metal, cardboard, pork belly, and pork muscle) were studied at distances of 10 mm and 15 mm from the jet nozzle. The results showed that the tiny plasma jet caused no damage or burning of tissues, and the ROS/RNS (reactive oxygen/nitrogen species) intensity increased when the distance was lowered from 15 mm to 10 mm. These initial observations establish the tiny plasma jet device as a potentially useful tool in clinical biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document