scholarly journals High density of unrepaired genomic ribonucleotides leads to Topoisomerase 1-mediated severe growth defects in absence of ribonucleotide reductase

2020 ◽  
Vol 48 (8) ◽  
pp. 4274-4297 ◽  
Author(s):  
Susana M Cerritelli ◽  
Jaime Iranzo ◽  
Sushma Sharma ◽  
Andrei Chabes ◽  
Robert J Crouch ◽  
...  

Abstract Cellular levels of ribonucleoside triphosphates (rNTPs) are much higher than those of deoxyribonucleoside triphosphates (dNTPs), thereby influencing the frequency of incorporation of ribonucleoside monophosphates (rNMPs) by DNA polymerases (Pol) into DNA. RNase H2-initiated ribonucleotide excision repair (RER) efficiently removes single rNMPs in genomic DNA. However, processing of rNMPs by Topoisomerase 1 (Top1) in absence of RER induces mutations and genome instability. Here, we greatly increased the abundance of genomic rNMPs in Saccharomyces cerevisiae by depleting Rnr1, the major subunit of ribonucleotide reductase, which converts ribonucleotides to deoxyribonucleotides. We found that in strains that are depleted of Rnr1, RER-deficient, and harbor an rNTP-permissive replicative Pol mutant, excessive accumulation of single genomic rNMPs severely compromised growth, but this was reversed in absence of Top1. Thus, under Rnr1 depletion, limited dNTP pools slow DNA synthesis by replicative Pols and provoke the incorporation of high levels of rNMPs in genomic DNA. If a threshold of single genomic rNMPs is exceeded in absence of RER and presence of limited dNTP pools, Top1-mediated genome instability leads to severe growth defects. Finally, we provide evidence showing that accumulation of RNA/DNA hybrids in absence of RNase H1 and RNase H2 leads to cell lethality under Rnr1 depletion.

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 1006-1006
Author(s):  
Tavia Roache

Abstract Mono-ribonucleotides are building blocks for polynucleotide RNA chains (e.g., messenger RNA), but if mis-incorporated into duplex DNA can cause mutagenesis and chromosomal instability. During DNA synthesis by Pol γ, remnants of unremoved RNA primers contribute to elevated mono-ribonucleotide triphosphates resulting in nucleotide pool imbalance, ultimately favoring mis-incorporated ribonucleotides during replication. Moreover, although polymerases generally replicate DNA with high fidelity, the steric gate occasionally allows a mis-incorporated ribonucleotide. Thus, a mono-ribonucleotide is one of the most abundant lesions in genomic DNA of eukaryotes. If unremoved from double-stranded DNA, the ribonucleotide exerts negative effects on replication, transcription, and genomic maintenance, with lasting effects on cellular homeostasis. Even a single ribonucleotide in telomeric DNA comprises shelterin binding and telomere capping causing vulnerability to spontaneous hydrolysis which potentiates telomere shortening. Consistent with this, a ribonucleotide positioned in double-helical DNA alters its structure by torsinally distorting the sugar-phosphate backbone. Fortunately, cellular response and repair pathways exist to help cells cope with mis-incorporated mono-ribonucleotides. The Ribonucleotide Excision Repair (RER) or a Topoisomerase 1 (Top1)-mediated pathway remove embedded ribonucleotides. For RER, RNase H2 incises 5’ of a mono-ribonucleotide, creating an access point for its removal. If cells are deficient in RNase H2, Top1 initiates removal of the ribonucleotide. However, Top1 is less accurate than RNase H2, which can lead to mutagenesis. Studying the mechanisms in which ribonucleotides are incorporated into DNA or further metabolized should provide insight to their negative consequences for chromosomal integrity, cancer, and auto-immune disease attributed to a genetic deficiency of RNase H2.


2021 ◽  
Vol 22 (10) ◽  
pp. 5201
Author(s):  
Maria Dede ◽  
Silvia Napolitano ◽  
Anna Melati ◽  
Valentina Pirota ◽  
Giovanni Maga ◽  
...  

Ribonucleotides misincorporated in the human genome are the most abundant DNA lesions. The 2′-hydroxyl group makes them prone to spontaneous hydrolysis, potentially resulting in strand breaks. Moreover, their presence may decrease the rate of DNA replication causing replicative fork stalling and collapse. Ribonucleotide removal is initiated by Ribonuclease H2 (RNase H2), the key player in Ribonucleotide Excision Repair (RER). Its absence leads to embryonic lethality in mice, while mutations decreasing its activity cause Aicardi–Goutières syndrome. DNA geometry can be altered by DNA lesions or by peculiar sequences forming secondary structures, like G-quadruplex (G4) and trinucleotide repeats (TNR) hairpins, which significantly differ from canonical B-form. Ribonucleotides pairing to lesioned nucleotides, or incorporated within non-B DNA structures could avoid RNase H2 recognition, potentially contributing to genome instability. In this work, we investigate the ability of RNase H2 to process misincorporated ribonucleotides in a panel of DNA substrates showing different geometrical features. RNase H2 proved to be a flexible enzyme, recognizing as a substrate the majority of the constructs we generated. However, some geometrical features and non-canonical DNA structures severely impaired its activity, suggesting a relevant role of misincorporated ribonucleotides in the physiological instability of specific DNA sequences.


DNA Repair ◽  
2017 ◽  
Vol 52 ◽  
pp. 110-114 ◽  
Author(s):  
Deborah A. Cornelio ◽  
Hailey N.C. Sedam ◽  
Jessica A. Ferrarezi ◽  
Nadia M.V. Sampaio ◽  
Juan Lucas Argueso

2020 ◽  
Author(s):  
Juan Miguel Baquero ◽  
Carlos Benítez-Buelga ◽  
Varshni Rajagopal ◽  
Zhao Zhenjun ◽  
Raúl Torres-Ruiz ◽  
...  

Abstract Background: The most common oxidative DNA lesion is 8-oxoguanine (8-oxoG) which is mainly recognized and excised by the glycosylase OGG1, initiating the Base Excision Repair (BER) pathway. Telomeres are particularly sensitive to oxidative stress which disrupts telomere homeostasis triggering genome instability. Methods: We used U2OS OGG1-GFP osteosarcoma cell line to study the role of OGG1 at the telomeres in response to oxidative stress. Next, we investigated the effects of inactivating pharmacologically the BER during oxidative stress (OS) conditions by using a specific small molecule inhibitor of OGG1 (TH5487) in different human cell lines. Results: We have found that during OS, TH5487 effectively blocks BER initiation at telomeres causing accumulation of oxidized bases at this region, correlating with other phenotypes such as telomere losses, micronuclei formation and mild proliferation defects. Besides, the antimetabolite Methotrexate synergizes with TH5487 through induction of intracellular ROS formation, which potentiates TH5487 mediated telomere and genome instability in different cell lines. Conclusions: Our findings demonstrate that OGG1 is required to protect telomeres from OS and present OGG1 inhibitors as a tool to induce oxidative DNA damage at telomeres, with the potential for developing new combination therapies for cancer treatment.


2019 ◽  
Vol 70 (20) ◽  
pp. 5575-5590 ◽  
Author(s):  
Shan-Shan Wei ◽  
Wei-Tao Niu ◽  
Xiao-Ting Zhai ◽  
Wei-Qian Liang ◽  
Meng Xu ◽  
...  

Abstract The 70 kDa heat shock proteins function as molecular chaperones and are involved in diverse cellular processes. However, the functions of the plant mitochondrial HSP70s (mtHSC70s) remain unclear. Severe growth defects were observed in the Arabidopsis thaliana mtHSC70-1 knockout lines, mthsc70-1a and mthsc70-1b. Conversely, the introduction of the mtHSC70-1 gene into the mthsc70-1a background fully reversed the phenotypes, indicating that mtHSC70-1 is essential for plant growth. The loss of mtHSC70-1 functions resulted in abnormal mitochondria and alterations to respiration because of an inhibition of the cytochrome c oxidase (COX) pathway and the activation of the alternative respiratory pathway. Defects in COX assembly were observed in the mtHSC70-1 knockout lines, leading to decreased COX activity. The mtHSC70-1 knockout plants have increased levels of reactive oxygen species (ROS). The introduction of the Mn-superoxide dismutase 1 (MSD1) or the catalase 1 (CAT1) gene into the mthsc70-1a plants decreased ROS levels, reduced the expression of alternative oxidase, and partially rescued growth. Taken together, our data suggest that mtHSC70-1 plays important roles in the establishment of COX-dependent respiration.


2013 ◽  
Vol 288 (29) ◽  
pp. 20918-20926 ◽  
Author(s):  
Jinchuan Hu ◽  
Jun-Hyuk Choi ◽  
Shobhan Gaddameedhi ◽  
Michael G. Kemp ◽  
Joyce T. Reardon ◽  
...  

Nucleotide excision repair is the sole mechanism for removing the major UV photoproducts from genomic DNA in human cells. In vitro with human cell-free extract or purified excision repair factors, the damage is removed from naked DNA or nucleosomes in the form of 24- to 32-nucleotide-long oligomers (nominal 30-mer) by dual incisions. Whether the DNA damage is removed from chromatin in vivo in a similar manner and what the fate of the excised oligomer was has not been known previously. Here, we demonstrate that dual incisions occur in vivo identical to the in vitro reaction. Further, we show that transcription-coupled repair, which operates in the absence of the XPC protein, also generates the nominal 30-mer in UV-irradiated XP-C mutant cells. Finally, we report that the excised 30-mer is released from the chromatin in complex with the repair factors TFIIH and XPG. Taken together, our results show the congruence of in vivo and in vitro data on nucleotide excision repair in humans.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Nicola P. Montaldo ◽  
Diana L. Bordin ◽  
Alessandro Brambilla ◽  
Marcel Rösinger ◽  
Sarah L. Fordyce Martin ◽  
...  

AbstractBase excision repair (BER) initiated by alkyladenine DNA glycosylase (AAG) is essential for removal of aberrantly methylated DNA bases. Genome instability and accumulation of aberrant bases accompany multiple diseases, including cancer and neurological disorders. While BER is well studied on naked DNA, it remains unclear how BER efficiently operates on chromatin. Here, we show that AAG binds to chromatin and forms complex with RNA polymerase (pol) II. This occurs through direct interaction with Elongator and results in transcriptional co-regulation. Importantly, at co-regulated genes, aberrantly methylated bases accumulate towards the 3′end in regions enriched for BER enzymes AAG and APE1, Elongator and active RNA pol II. Active transcription and functional Elongator are further crucial to ensure efficient BER, by promoting AAG and APE1 chromatin recruitment. Our findings provide insights into genome stability maintenance in actively transcribing chromatin and reveal roles of aberrantly methylated bases in regulation of gene expression.


2014 ◽  
Vol 34 (8) ◽  
pp. 1521-1534 ◽  
Author(s):  
S. Allen-Soltero ◽  
S. L. Martinez ◽  
C. D. Putnam ◽  
R. D. Kolodner

2014 ◽  
Vol 17 (6) ◽  
pp. 813-821 ◽  
Author(s):  
Sachin Katyal ◽  
Youngsoo Lee ◽  
Karin C Nitiss ◽  
Susanna M Downing ◽  
Yang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document