scholarly journals Interaction of OIP5-AS1 with MEF2C mRNA promotes myogenic gene expression

2020 ◽  
Vol 48 (22) ◽  
pp. 12943-12956
Author(s):  
Jen-Hao Yang ◽  
Ming-Wen Chang ◽  
Poonam R Pandey ◽  
Dimitrios Tsitsipatis ◽  
Xiaoling Yang ◽  
...  

Abstract Long noncoding (lnc)RNAs potently regulate gene expression programs in physiology and disease. Here, we describe a key function for lncRNA OIP5-AS1 in myogenesis, the process whereby myoblasts differentiate into myotubes during muscle development and muscle regeneration after injury. In human myoblasts, OIP5-AS1 levels increased robustly early in myogenesis, and its loss attenuated myogenic differentiation and potently reduced the levels of the myogenic transcription factor MEF2C. This effect relied upon the partial complementarity of OIP5-AS1 with MEF2C mRNA and the presence of HuR, an RNA-binding protein (RBP) with affinity for both transcripts. Remarkably, HuR binding to MEF2C mRNA, which stabilized MEF2C mRNA and increased MEF2C abundance, was lost after OIP5-AS1 silencing, suggesting that OIP5-AS1 might serve as a scaffold to enhance HuR binding to MEF2C mRNA, in turn increasing MEF2C production. These results highlight a mechanism whereby a lncRNA promotes myogenesis by enhancing the interaction of an RBP and a myogenic mRNA.

2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Ling-Ping Zhu ◽  
Yun-Jie He ◽  
Jun-Chen Hou ◽  
Xiu Chen ◽  
Si-Ying Zhou ◽  
...  

Circular RNAs (circRNAs) are recently regarded as a naturally forming family of widespread and diverse endogenous noncoding RNAs (ncRNAs) that may regulate gene expression in mammals. At present, above 30000 circRNAs have already been found, with their unique structures to maintain stability more easily than linear RNAs. Several previous literatures stressed on the important role of circRNAs, whose expression was relatively correlated with patients’ clinical characteristics and grade, in the carcinogenesis of cancer. CircRNAs are involved in many regulatory bioprocesses of malignance, including cell cycle, tumorigenesis, invasion, metastasis, apoptosis, vascularization, through adsorbing RNA as a sponge, binding to RNA-binding protein (RBP), modulating transcription, or influencing translation. Therefore, it is inevitable to further study the interactions between circRNAs and tumors and to develop novel circRNAs as molecular markers or potential targets, which will provide promising applications in early diagnosis, therapeutic evaluation, prognosis prediction of tumors and even gene therapy for tumors.


2018 ◽  
Author(s):  
Lisa Fish ◽  
Hoang C.B. Nguyen ◽  
Steven Zhang ◽  
Myles Hochman ◽  
Brian D. Dill ◽  
...  

SUMMARYPost-transcriptional regulation of RNA stability is a key step in gene expression control. We describe a regulatory program, mediated by the double-stranded RNA binding protein TARBP2, that controls RNA stability in the nucleus. TARBP2 binding to pre-mRNAs results in increased intron retention, subsequently leading to targeted degradation of TARBP2-bound transcripts. This is mediated by TARBP2 recruitment of the m6A RNA methylation machinery to its target transcripts, where deposition of m6A marks influences the recruitment of splicing regulators, inhibiting efficient splicing. Interactions between TARBP2 and the nucleoprotein TPR then promote degradation of these TARBP2-bound transcripts by the nuclear exosome. Additionally, analysis of clinical gene expression datasets revealed a functional role for this TARBP2 pathway in lung cancer. Using xenograft mouse models, we find that TARBP2 impacts tumor growth in the lung, and that this function is dependent on TARBP2-mediated destabilization of ABCA3 and FOXN3. Finally, we establish the transcription factor ZNF143 as an upstream regulator of TARBP2 expression.RESEARCH HIGHLIGHTSThe RNA-binding protein TARBP2 controls the stability of its target transcripts in the nucleusNuclear TARBP2 recruits the methyltransferase complex to deposit m6A marks on its target transcriptsTARBP2 and m6A-mediated interactions with splicing and nuclear RNA surveillance complexes result in target transcript intron retention and decay.Increased TARBP2 expression is associated with lung cancer and promotes lung cancer growthin vivo.The transcription factor ZNF143 drives oncogenic TARBP2 upregulation in lung cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junjian He ◽  
Xiaoxin Ma

Long non-coding RNAs (LncRNAs) can bind to other proteins or RNAs to regulate gene expression, and its role in tumors has been extensively studied. A common RNA binding protein, UPF1, is also a key factor in a variety of RNA decay pathways. RNA decay pathways serve to control levels of particular RNA molecules. The expression of UPF1 is often dysregulated in tumors, an observation which suggests that UPF1 contributes to development of a variety of tumors. Herein, we review evidence from studies of fourteen lncRNAs interact with UPF1. The interaction between lncRNA and UPFI provide fundamental basis for cell transformation and tumorigenic growth.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 361
Author(s):  
Myeongwoo Jung ◽  
Eun-Kyung Lee

HuD (also known as ELAVL4) is an RNA–binding protein belonging to the human antigen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs. Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal development, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic transmission by regulating the metabolism of target mRNAs. However, growing evidence suggests that HuD also functions as a pivotal regulator of gene expression in non–neuronal systems and its malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression, abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant HuD expression. This review focuses on recent advances investigating the emerging role of HuD, its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and non–neuronal systems.


2018 ◽  
Vol 154 (6) ◽  
pp. S-585
Author(s):  
Sarah F. Andres ◽  
Kathy N. Williams ◽  
Kathryn E. Hamilton ◽  
Rei Mizuno ◽  
Jeff Headd ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document