scholarly journals Interaction Between LncRNA and UPF1 in Tumors

2021 ◽  
Vol 12 ◽  
Author(s):  
Junjian He ◽  
Xiaoxin Ma

Long non-coding RNAs (LncRNAs) can bind to other proteins or RNAs to regulate gene expression, and its role in tumors has been extensively studied. A common RNA binding protein, UPF1, is also a key factor in a variety of RNA decay pathways. RNA decay pathways serve to control levels of particular RNA molecules. The expression of UPF1 is often dysregulated in tumors, an observation which suggests that UPF1 contributes to development of a variety of tumors. Herein, we review evidence from studies of fourteen lncRNAs interact with UPF1. The interaction between lncRNA and UPFI provide fundamental basis for cell transformation and tumorigenic growth.

2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Ling-Ping Zhu ◽  
Yun-Jie He ◽  
Jun-Chen Hou ◽  
Xiu Chen ◽  
Si-Ying Zhou ◽  
...  

Circular RNAs (circRNAs) are recently regarded as a naturally forming family of widespread and diverse endogenous noncoding RNAs (ncRNAs) that may regulate gene expression in mammals. At present, above 30000 circRNAs have already been found, with their unique structures to maintain stability more easily than linear RNAs. Several previous literatures stressed on the important role of circRNAs, whose expression was relatively correlated with patients’ clinical characteristics and grade, in the carcinogenesis of cancer. CircRNAs are involved in many regulatory bioprocesses of malignance, including cell cycle, tumorigenesis, invasion, metastasis, apoptosis, vascularization, through adsorbing RNA as a sponge, binding to RNA-binding protein (RBP), modulating transcription, or influencing translation. Therefore, it is inevitable to further study the interactions between circRNAs and tumors and to develop novel circRNAs as molecular markers or potential targets, which will provide promising applications in early diagnosis, therapeutic evaluation, prognosis prediction of tumors and even gene therapy for tumors.


2020 ◽  
Vol 48 (22) ◽  
pp. 12943-12956
Author(s):  
Jen-Hao Yang ◽  
Ming-Wen Chang ◽  
Poonam R Pandey ◽  
Dimitrios Tsitsipatis ◽  
Xiaoling Yang ◽  
...  

Abstract Long noncoding (lnc)RNAs potently regulate gene expression programs in physiology and disease. Here, we describe a key function for lncRNA OIP5-AS1 in myogenesis, the process whereby myoblasts differentiate into myotubes during muscle development and muscle regeneration after injury. In human myoblasts, OIP5-AS1 levels increased robustly early in myogenesis, and its loss attenuated myogenic differentiation and potently reduced the levels of the myogenic transcription factor MEF2C. This effect relied upon the partial complementarity of OIP5-AS1 with MEF2C mRNA and the presence of HuR, an RNA-binding protein (RBP) with affinity for both transcripts. Remarkably, HuR binding to MEF2C mRNA, which stabilized MEF2C mRNA and increased MEF2C abundance, was lost after OIP5-AS1 silencing, suggesting that OIP5-AS1 might serve as a scaffold to enhance HuR binding to MEF2C mRNA, in turn increasing MEF2C production. These results highlight a mechanism whereby a lncRNA promotes myogenesis by enhancing the interaction of an RBP and a myogenic mRNA.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Dustin Haskell ◽  
Anna Zinovyeva

Abstract MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level, but the extent to which these key regulators of gene expression coordinate their activities and the precise mechanisms of this coordination are not well understood. RBPs often have recognizable RNA binding domains that correlate with specific protein function. Recently, several RBPs containing K homology (KH) RNA binding domains were shown to work with miRNAs to regulate gene expression, raising the possibility that KH domains may be important for coordinating with miRNA pathways in gene expression regulation. To ascertain whether additional KH domain proteins functionally interact with miRNAs during Caenorhabditis elegans development, we knocked down twenty-four genes encoding KH-domain proteins in several miRNA sensitized genetic backgrounds. Here, we report that a majority of the KH domain-containing genes genetically interact with multiple miRNAs and Argonaute alg-1. Interestingly, two KH domain genes, predicted splicing factors sfa-1 and asd-2, genetically interacted with all of the miRNA mutants tested, whereas other KH domain genes showed genetic interactions only with specific miRNAs. Our domain architecture and phylogenetic relationship analyses of the C. elegans KH domain-containing proteins revealed potential groups that may share both structure and function. Collectively, we show that many C. elegans KH domain RBPs functionally interact with miRNAs, suggesting direct or indirect coordination between these two classes of post-transcriptional gene expression regulators.


2008 ◽  
Vol 389 (6) ◽  
Author(s):  
George M. Yousef

Abstract microRNAs (miRNAs) are a recently discovered class of small non-coding RNAs that regulate gene expression. Rapidly accumulating evidence has revealed that miRNAs are associated with cancer. The human tissue kalli-krein gene family is the largest contiguous family of proteases in the human genome, containing 15 genes. Many kallikreins have been reported as potential tumor markers. In this review, recent bioinformatics and experimental evidence is presented indicating that kallikreins are potential miRNA targets. The available experimental approaches to investigate these interactions and the potential diagnostic and therapeutic applications are also discussed. miRNAs represent a possible regulatory mechanism for controlling kallikrein expression at the post-transcriptional level. Many miRNAs were predicted to target kallikreins and a single miRNA can target more than one kallikrein. Recent evidence suggests that miRNAs can also exert ‘quantitative’ control of kallikreins by utilizing multiple targeting sites in the kallikrein mRNA. More research is needed to experimentally verify the in silico predictions and to investigate the possible role in tumor initiation and/or progression.


MicroRNA ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ling Lin ◽  
Kebin Hu

: MicroRNAs (miRNAs) are small non-coding RNAs (19~25 nucleotides) that regulate gene expression at a post-transcriptional level through repression of mRNA translation or mRNA decay. miR-147, which was initially discovered in mouse spleen and macrophages, has been shown to correlate with coronary atherogenesis and inflammatory bowel disease and modulate macrophage functions and inflammation through TLR-4. The altered miR-147 level has been shown in various human diseases, including infectious disease, cancer, cardiovascular disease, a neurodegenerative disorder, etc. This review will focus on the current understanding regarding the role of miR-147 in inflammation and diseases.


Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 62 ◽  
Author(s):  
Yongjie Xu ◽  
Wei Wu ◽  
Qiu Han ◽  
Yaling Wang ◽  
Cencen Li ◽  
...  

The emerging data indicates that non-coding RNAs (ncRNAs) epresent more than the “junk sequences” of the genome. Both miRNAs and long non-coding RNAs (lncRNAs) are involved in fundamental biological processes, and their deregulation may lead to oncogenesis and other diseases. As an important RNA-binding protein (RBP), heterogeneous nuclear ribonucleoprotein K (hnRNPK) is known to regulate gene expression through the RNA-binding domain involved in various pathways, such as transcription, splicing, and translation. HnRNPK is a highly conserved gene that is abundantly expressed in mammalian cells. The interaction of hnRNPK and ncRNAs defines the novel way through which ncRNAs affect the expression of protein-coding genes and form autoregulatory feedback loops. This review summarizes the interactions of hnRNPK and ncRNAs in regulating gene expression at transcriptional and post-transcriptional levels or by changing the genomic structure, highlighting their involvement in carcinogenesis, glucose metabolism, stem cell differentiation, virus infection and other cellular functions. Drawing connections between such discoveries might provide novel targets to control the biological outputs of cells in response to different stimuli.


2008 ◽  
Vol 36 (6) ◽  
pp. 1224-1231 ◽  
Author(s):  
Ian G. Cannell ◽  
Yi Wen Kong ◽  
Martin Bushell

miRNAs (microRNAs) are short non-coding RNAs that regulate gene expression post-transcriptionally. They generally bind to the 3′-UTR (untranslated region) of their target mRNAs and repress protein production by destabilizing the mRNA and translational silencing. The exact mechanism of miRNA-mediated translational repression is yet to be fully determined, but recent data from our laboratory have shown that the stage of translation which is inhibited by miRNAs is dependent upon the promoter used for transcribing the target mRNA. This review focuses on understanding how miRNA repression is operating in light of these findings and the questions that still remain.


2017 ◽  
Vol 47 (7) ◽  
Author(s):  
Marcela Wolf ◽  
Eloísa Muehlbauer ◽  
Marlos Gonçalves Sousa

ABSTRACT: The use of biomarkers is an important recent development in veterinary medicine. Biomarkers allow non-invasive quantification of substances with diagnostic and prognostic potential in several diseases. The microRNAs are small, non-coding RNAs that regulate gene expression and are expressed in different forms in many diseases. Reduced or over-expression of microRNAs showed to be part of the pathogenesis of some heart diseases in humans and animals. Diagnostic and therapeutic value of measuring microRNAs in veterinary cardiology is increased because abnormal expression can be managed by the use of antagonists (in the case of overexpression) and mimicking (in the case of underexpression). Thus, this literature review aimed to compile scientific evidence of dysregulation of microRNAs expression in different cardiac diseases being one of the promises in the therapeutic field and diagnosis of veterinary cardiology. MicroRNAs not only have potential as a biomarker but may also help in elucidation of aspects of the pathogenesis of a variety of diseases.


2011 ◽  
Vol 2 (3) ◽  
pp. 127-134
Author(s):  
Tiia Husso ◽  
Mikko P. Turunen ◽  
Nigel Parker ◽  
Seppo Ylä-Herttuala

AbstractSmall RNAs have been shown to regulate gene transcription by interacting with the promoter region and modifying the histone code. The exact mechanism of function is still unclear but the feasibility to activate or repress endogenous gene expression with small RNA molecules has already been demonstrated in vitro and in vivo. In traditional gene therapy non-mutated or otherwise useful genes are inserted into patient's cells to treat a disease. In epigenetherapy the action of small RNAs is utilized by delivering only the small RNAs to patient's cells where they then regulate gene expression by epigenetic mechanisms. This method could be widely useful not only for basic research but also for clinical applications of small RNAs.


Sign in / Sign up

Export Citation Format

Share Document