scholarly journals MISIM v2.0: a web server for inferring microRNA functional similarity based on microRNA-disease associations

2019 ◽  
Vol 47 (W1) ◽  
pp. W536-W541 ◽  
Author(s):  
Jianwei Li ◽  
Shan Zhang ◽  
Yanping Wan ◽  
Yingshu Zhao ◽  
Jiangcheng Shi ◽  
...  

Abstract MicroRNAs (miRNAs) are one class of important small non-coding RNA molecules and play critical roles in health and disease. Therefore, it is important and necessary to evaluate the functional relationship of miRNAs and then predict novel miRNA-disease associations. For this purpose, here we developed the updated web server MISIM (miRNA similarity) v2.0. Besides a 3-fold increase in data content compared with MISIM v1.0, MISIM v2.0 improved the original MISIM algorithm by implementing both positive and negative miRNA-disease associations. That is, the MISIM v2.0 scores could be positive or negative, whereas MISIM v1.0 only produced positive scores. Moreover, MISIM v2.0 achieved an algorithm for novel miRNA-disease prediction based on MISIM v2.0 scores. Finally, MISIM v2.0 provided network visualization and functional enrichment analysis for functionally paired miRNAs. The MISIM v2.0 web server is freely accessible at http://www.lirmed.com/misim/.

2016 ◽  
Vol 2 (1) ◽  
pp. 33 ◽  
Author(s):  
Jean Fred Fontaine ◽  
Miguel A Andrade-Navarro

Large sets of candidate genes derived from high-throughput biological experiments can be characterized by functional enrichment analysis. The analysis consists of comparing the functions of one gene set against that of a background gene set. Then, functions related to a significant number of genes in the gene set are expected to be relevant. Web tools offering disease enrichment analysis on gene sets are often based on gene-disease associations from manually curated or experimental data that is accurate but does not cover all diseases discussed in the literature. Using associations automatically derived from literature data could be a cost effective method to improve the coverage of diseases for enrichment analysis at comparable levels of accuracy. We have implemented a method named Gene set to Diseases, GS2D, as a web tool performing disease enrichment analysis on human protein coding gene sets. It uses an automatically built dataset of more than 63 thousand gene-disease associations defined as statistically significant co-occurrences of genes and diseases in annotations of biomedical citations from PubMed. The dataset covers more diseases for enrichment analysis than the largest comparable curated database, Comparative Toxicogenomics Database, and its performance compared favourably to similar approaches based on manually curated or experimental data. Graphical and programmatic interfaces are available at http://cbdm.uni-mainz.de/geneset2diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xingbo Bian ◽  
Pengcheng Yu ◽  
Ling Dong ◽  
Yan Zhao ◽  
He Yang ◽  
...  

AbstractGinseng rusty root symptom (GRS) is one of the primary diseases of ginseng. It leads to a severe decline in the quality of ginseng and significantly affects the ginseng industry. The regulatory mechanism of non-coding RNA (ncRNA) remains unclear in the course of disease. This study explored the long ncRNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) in GRS tissues and healthy ginseng (HG) tissues and performed functional enrichment analysis of the screened differentially expressed ncRNAs. Considering the predictive and regulatory effects of ncRNAs on mRNAs, we integrated ncRNA and mRNA data to analyze and construct relevant regulatory networks. A total of 17,645 lncRNAs, 245 circRNAs, and 299 miRNAs were obtained from HG and GRS samples, and the obtained ncRNAs were characterized, including the classification of lncRNAs, length and distribution of circRNA, and the length and family affiliations of miRNAs. In the analysis of differentially expressed ncRNA target genes, we found that lncRNAs may be involved in the homeostatic process of ginseng tissues and that lncRNAs, circRNAs, and miRNAs are involved in fatty acid-related regulation, suggesting that alterations in fatty acid-related pathways may play a key role in GRS. Besides, differentially expressed ncRNAs play an essential role in regulating transcriptional translation processes, primary metabolism such as starch and sucrose, and secondary metabolism such as alkaloids in ginseng tissues. Finally, we integrated the correlations between ncRNAs and mRNAs, constructed corresponding interaction networks, and identified ncRNAs that may play critical roles in GRS. These results provide a basis for revealing GRS's molecular mechanism and enrich our understanding of ncRNAs in ginseng.


2021 ◽  
Vol 12 ◽  
Author(s):  
Decai Xiang ◽  
Baoyu Jia ◽  
Jianxiong Guo ◽  
Qingyong Shao ◽  
Qionghua Hong ◽  
...  

Cryopreservation of porcine cloned zygotes has important implications for biotechnology and biomedicine research; however, lower embryo developmental potential remains an urgent problem to be resolved. For exploring the sublethal cryodamages during embryo development, this study was designed to acquire the mRNA and long non-coding RNA (lncRNA) profiles of 2-cells, 4-cells and blastocysts derived from vitrified porcine cloned zygotes using transcriptome sequencing. We identified 167 differentially expressed (DE) mRNAs and 516 DE lncRNAs in 2-cell stage, 469 DE mRNAs and 565 lncRNAs in 4-cell stage, and 389 DE mRNAs and 816 DE lncRNAs in blastocyst stage. Functional enrichment analysis revealed that the DE mRNAs during embryo development were involved in many regulatory mechanisms related to cell cycle, cell proliferation, apoptosis, metabolism and others. Moreover, the target genes of DE lncRNAs in the three embryonic stages were also enriched in many key GO terms or pathways such as “defense response”, “linoleic acid metabolic process”, “embryonic axis specification”, “negative regulation of protein neddylation”, etc., In conclusion, the present study provided comprehensive transcriptomic data about mRNAs and lncRNAs for the vitrified porcine cloned zygotes during different developmental stages, which contributed to further understand the potential cryodamage mechanisms responsible for impaired embryo development.


2019 ◽  
Vol 14 (7) ◽  
pp. 591-601 ◽  
Author(s):  
Aravind K. Konda ◽  
Parasappa R. Sabale ◽  
Khela R. Soren ◽  
Shanmugavadivel P. Subramaniam ◽  
Pallavi Singh ◽  
...  

Background: Chickpea is a nutritional rich premier pulse crop but its production encounters setbacks due to various stresses and understanding of molecular mechanisms can be ascribed foremost importance. Objective: The investigation was carried out to identify the differentially expressed WRKY TFs in chickpea in response to herbicide stress and decipher their interacting partners. Methods: For this purpose, transcriptome wide identification of WRKY TFs in chickpea was done. Behavior of the differentially expressed TFs was compared between other stress conditions. Orthology based cofunctional gene networks were derived from Arabidopsis. Gene ontology and functional enrichment analysis was performed using Blast2GO and STRING software. Gene Coexpression Network (GCN) was constructed in chickpea using publicly available transcriptome data. Expression pattern of the identified gene network was studied in chickpea-Fusarium interactions. Results: A unique WRKY TF (Ca_08086) was found to be significantly (q value = 0.02) upregulated not only under herbicide stress but also in other stresses. Co-functional network of 14 genes, namely Ca_08086, Ca_19657, Ca_01317, Ca_20172, Ca_12226, Ca_15326, Ca_04218, Ca_07256, Ca_14620, Ca_12474, Ca_11595, Ca_15291, Ca_11762 and Ca_03543 were identified. GCN revealed 95 hub genes based on the significant probability scores. Functional annotation indicated role in callose deposition and response to chitin. Interestingly, contrasting expression pattern of the 14 network genes was observed in wilt resistant and susceptible chickpea genotypes, infected with Fusarium. Conclusion: This is the first report of identification of a multi-stress responsive WRKY TF and its associated GCN in chickpea.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenyang Liao ◽  
Xunxiao Zhang ◽  
Shengcheng Zhang ◽  
Zhicong Lin ◽  
Xingtan Zhang ◽  
...  

Abstract Background Structural variations (SVs) are a type of mutations that have not been widely detected in plant genomes and studies in animals have shown their role in the process of domestication. An in-depth study of SVs will help us to further understand the impact of SVs on the phenotype and environmental adaptability during papaya domestication and provide genomic resources for the development of molecular markers. Results We detected a total of 8083 SVs, including 5260 deletions, 552 tandem duplications and 2271 insertions with deletion being the predominant, indicating the universality of deletion in the evolution of papaya genome. The distribution of these SVs is non-random in each chromosome. A total of 1794 genes overlaps with SV, of which 1350 genes are expressed in at least one tissue. The weighted correlation network analysis (WGCNA) of these expressed genes reveals co-expression relationship between SVs-genes and different tissues, and functional enrichment analysis shows their role in biological growth and environmental responses. We also identified some domesticated SVs genes related to environmental adaptability, sexual reproduction, and important agronomic traits during the domestication of papaya. Analysis of artificially selected copy number variant genes (CNV-genes) also revealed genes associated with plant growth and environmental stress. Conclusions SVs played an indispensable role in the process of papaya domestication, especially in the reproduction traits of hermaphrodite plants. The detection of genome-wide SVs and CNV-genes between cultivated gynodioecious populations and wild dioecious populations provides a reference for further understanding of the evolution process from male to hermaphrodite in papaya.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 672-688
Author(s):  
Yanbo Dong ◽  
Siyu Lu ◽  
Zhenxiao Wang ◽  
Liangfa Liu

AbstractThe chaperonin-containing T-complex protein 1 (CCT) subunits participate in diverse diseases. However, little is known about their expression and prognostic values in human head and neck squamous cancer (HNSC). This article aims to evaluate the effects of CCT subunits regarding their prognostic values for HNSC. We mined the transcriptional and survival data of CCTs in HNSC patients from online databases. A protein–protein interaction network was constructed and a functional enrichment analysis of target genes was performed. We observed that the mRNA expression levels of CCT1/2/3/4/5/6/7/8 were higher in HNSC tissues than in normal tissues. Survival analysis revealed that the high mRNA transcriptional levels of CCT3/4/5/6/7/8 were associated with a low overall survival. The expression levels of CCT4/7 were correlated with advanced tumor stage. And the overexpression of CCT4 was associated with higher N stage of patients. Validation of CCTs’ differential expression and prognostic values was achieved by the Human Protein Atlas and GEO datasets. Mechanistic exploration of CCT subunits by the functional enrichment analysis suggests that these genes may influence the HNSC prognosis by regulating PI3K-Akt and other pathways. This study implies that CCT3/4/6/7/8 are promising biomarkers for the prognosis of HNSC.


2021 ◽  
Vol 28 (1) ◽  
pp. 20-33
Author(s):  
Lydia-Eirini Giannakou ◽  
Athanasios-Stefanos Giannopoulos ◽  
Chrissi Hatzoglou ◽  
Konstantinos I. Gourgoulianis ◽  
Erasmia Rouka ◽  
...  

Haemophilus influenzae (Hi), Moraxella catarrhalis (MorCa) and Pseudomonas aeruginosa (Psa) are three of the most common gram-negative bacteria responsible for human respiratory diseases. In this study, we aimed to identify, using the functional enrichment analysis (FEA), the human gene interaction network with the aforementioned bacteria in order to elucidate the full spectrum of induced pathogenicity. The Human Pathogen Interaction Database (HPIDB 3.0) was used to identify the human proteins that interact with the three pathogens. FEA was performed via the ToppFun tool of the ToppGene Suite and the GeneCodis database so as to identify enriched gene ontologies (GO) of biological processes (BP), cellular components (CC) and diseases. In total, 11 human proteins were found to interact with the bacterial pathogens. FEA of BP GOs revealed associations with mitochondrial membrane permeability relative to apoptotic pathways. FEA of CC GOs revealed associations with focal adhesion, cell junctions and exosomes. The most significantly enriched annotations in diseases and pathways were lung adenocarcinoma and cell cycle, respectively. Our results suggest that the Hi, MorCa and Psa pathogens could be related to the pathogenesis and/or progression of lung adenocarcinoma via the targeting of the epithelial cellular junctions and the subsequent deregulation of the cell adhesion and apoptotic pathways. These hypotheses should be experimentally validated.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhiyong Liu ◽  
Kai Dang ◽  
Cunzhi Li ◽  
Junhong Gao ◽  
Hong Wang ◽  
...  

Abstract Hexanitrohexaazaisowurtzitane (CL-20) is a compound with a polycyclic cage and an N-nitro group that has been shown to play an unfavorable role in environmental fate, biosafety, and physical health. The aim of this study was to isolate the microbial community and to identify a single microbial strain that can degrade CL-20 with desirable efficiency. Metagenomic sequencing methods were performed to investigate the dynamic changes in the composition of the community diversity. The most varied genus among the microbial community was Pseudomonas, which increased from 1.46% to 44.63% during the period of incubation (MC0–MC4). Furthermore, the new strain was isolated and identified from the activated sludge by bacterial morphological and 16s rRNA sequencing analyses. The CL-20 concentrations decreased by 75.21 μg/mL and 74.02 μg/mL in 48 h by MC4 and Pseudomonas sp. ZyL-01, respectively. Moreover, ZyL-01 could decompose 98% CL-20 of the real effluent in 14 day’s incubation with the glucose as carbon source. Finally, a draft genome sequence was obtained to predict possible degrading enzymes involved in the biodegradation of CL-20. Specifically, 330 genes that are involved in energy production and conversion were annotated by Gene Ontology functional enrichment analysis, and some of these candidates may encode enzymes that are responsible for CL-20 degradation. In summary, our studies indicate that microbes might be a valuable biological resource for the treatment of environmental contamination caused by CL-20 and that Pseudomonas sp. ZyL-01 might be a promising candidate for eradicating CL-20 to achieve a more biosafe environment and improve public health.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuntao Shi ◽  
Yingying Zhuang ◽  
Jialing Zhang ◽  
Mengxue Chen ◽  
Shangnong Wu

Objective. Although noncoding RNAs, especially the microRNAs, have been found to play key roles in CRC development in intestinal tissue, the specific mechanism of these microRNAs has not been fully understood. Methods. GEO and TCGA database were used to explore the microRNA expression profiles of normal mucosa, adenoma, and carcinoma. And the differential expression genes were selected. Computationally, we built the SVM model and multivariable Cox regression model to evaluate the performance of tumorigenic microRNAs in discriminating the adenomas from normal tissues and risk prediction. Results. In this study, we identified 20 miRNA biomarkers dysregulated in the colon adenomas. The functional enrichment analysis showed that MAPK activity and MAPK cascade were highly enriched by these tumorigenic microRNAs. We also investigated the target genes of the tumorigenic microRNAs. Eleven genes, including PIGF, TPI1, KLF4, RARS, PCBP2, EIF5A, HK2, RAVER2, HMGN1, MAPK6, and NDUFA2, were identified to be frequently targeted by the tumorigenic microRNAs. The high AUC value and distinct overall survival rates between the two risk groups suggested that these tumorigenic microRNAs had the potential of diagnostic and prognostic value in CRC. Conclusions. The present study revealed possible mechanisms and pathways that may contribute to tumorigenesis of CRC, which could not only be used as CRC early detection biomarkers, but also be useful for tumorigenesis mechanism studies.


Sign in / Sign up

Export Citation Format

Share Document