P0971IDENTIFICATION OF HUB GENES ASSOCIATED WITH THE DEPOSITION OF EXTRACELLULAR MATRIX AND SPECIFIC FOR DIABETIC NEPHROPATHY BY WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Songtao Feng ◽  
Linli Lv ◽  
Gao Yueming ◽  
Cao Jingyuan ◽  
Di Yin ◽  
...  

Abstract Background and Aims Diabetic nephropathy (DN) and its most severe manifestation, end-stage renal disease (ESRD), remains one of the leading causes of reduced lifespan in people with diabetes. Identifying novel molecules that are involved in the pathogenesis of DN has both diagnostic and therapeutic implications. The gene co-expression network analysis (WGCNA) algorithm represents a novel systems biology approach that provide the approach of association between gene modules and clinical traits to find the module involvement into the certain phenotypic trait. The goal of this study was to identify hub genes and their roles in DN from the aspect of whole gene transcripts analysis. Method Various types of chronic kidney diseases (CKD), including DN, microarray-based mRNA gene expression data, listed in the Gene Expression Omnibus (GEO) database, were analyzed. Next, we constructed a weighted gene co-expression network and identified modules distinguishing DN from normal or other types of CKD by WGCNA. Functional annotations of the genes in modules specialized for DN were analyzed by Gene Ontology (GO) enrichment analysis. Through protein-protein interaction (PPI) analysis and hub gene screening, the hub genes specific for DN were obtained. Furthermore, we drew ROC curves to determine the diagnosis and differential diagnosis value to DN of hub genes. Finally, another study of microarray in the GEO database was selected to verify the expression level of hub genes and in the “Nephroseq” database, the correlation between the gene expression level and eGFR was analyzed. Results “GSE99339”, glomerular tissue microarray in 187 patients with a total of 10947 genes, was selected for analysis. After excluding the inappropriate cases, a total of 179 specimens were analyzed, including 14 cases of DN, 22 cases of focal segmental glomerulosclerosis (FSGS), 15 cases of hypertensive nephropathy (HT), 26 cases of IgA nephropathy (IgAN), 13 cases of minimal change disease (MCD), 21 cases of membranous nephropathy (MGN), 23 cases of rapidly progressive glomerulonephritis (RPGN), 30 cases of lupus nephritis (LN) and 14 cases of kidney tissue adjacent to tumor. Co-expression network analysis by WGCNA identified 23 distinct gene modules of the total 10947 genes and revealed “MEsaddlegreen” module was strongly correlated with DN (r=0,54), but not with other groups. GO functional annotation showed that these 64 genes in the “MEsaddlegreen” module mainly enriched in the deposition of extracellular matrix, which represents the specific and diagnostic pathophysiological process of DN. Further PPI and hub gene screening analysis revealed that LUM, ELN, FBLN1, MMP2, FBLN5 and FMOD can be served as hub genes, which had been proved to play an important role in the deposition of extracellular matrix. Furthermore, we found that the expression of hub genes was the highest in DN group and for the diagnosis value of DN by each gene, the area under the ROC curve is about 0.75∼0.95. The external verification of another study showed that compared with the normal control group, the expression of these hub genes was the highest in the DN group, and their expression level was negatively correlated with eGFR. Conclusion Using WGCNA and further bioinformatics approach, we identified six hub genes that appear to be identical to DN development. As such, they may represent potential diagnostic biomarkers as well as therapeutic targets with clinical utility.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Songtao Feng ◽  
Bicheng Liu ◽  
Linli Lv ◽  
Gao Yueming ◽  
Di Yin ◽  
...  

Abstract Background and Aims The fact that activation of the innate immune system and chronic inflammation are closely involved in the pathogenesis of diabetic Kidney disease (DKD). Recent studies have suggested the inflammatory process plays a crucial role in the progression of DKD. Identifying novel inflammatory molecules closely related to the decline of renal function is of significance in diagnosing and predicting the progression of DKD. The weighted gene co-expression network analysis (WGCNA) algorithm represents a novel systems biology method that provide the approach of association between gene modules and clinical traits to find the genes involvement into the certain phenotypic trait. The goal of this study was to identify hub genes and their roles in DKD from the gene sets associated with the decline of renal function by WGCNA. Method The Gene Expression Omnibus (GEO) database and “Nephroseq” website were searched and transcriptome study from DN biopsies with well-established clinical phenotypic data were selected for analysis. Next, we constructed a weighted gene co-expression network and identified modules negatively correlated with eGFR by WGCNA in the data of glomerular tissue. Functional annotations of the genes in modules negatively correlated with eGFR were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Through protein-protein interaction (PPI) analysis and hub gene screening, the hub genes were obtained. Furthermore, we compared the expression level of hub genes between DKD and normal control and drew ROC curves to determine the diagnosis value to DKD of these genes. Results The microarray-based expression datasets GSE30528 were screened out for analysis, which included glomeruli tissue of 9 cases of DKD and 13 cases of control. This microarray platform represented the transcriptome profile of 12411 well-characterized genes. Using WGCNA, a total of 19 gene modules were identified. Then module eigengene were analyzed for correlation with clinical traits of age, sex, ethnicity and eGFR and the “MEhoneydew1” module showed negative associated with eGFR (r=-0.58). GO functional annotation showed that these 551 genes in the “MEhoneydew1” module mainly enriched in the T cell activation. KEGG annotation showed mainly enriched in chemokine signaling pathway. Except for C3, top 10 hub genes, CCR5, CXCR4, CCR7, CCL5, CXCL8, CCR2, CCR1, CX3CR1, C3AR1 and C3, are all members of chemokines or chemokine receptors. Furthermore, we compared the expression level of these 9 genes between DKD and control, and found that all of these 9 genes increased in the DKD group, and the differences of 6 genes, CCR5, CCR7, CCL5, CCR2, CCR1, C3AR1, were of statistical significance. Linear correlation analysis showed that the expression of these 6 genes was negatively correlated with eGFR, and the ROC curve showed that the area under the curve could reach 0.812∼1.0. Conclusion We identified a panel of 6 hub genes focused on chemokines and chemokine receptors critical for decline of renal function of DKD using WGCNA. These genes may serve as biomarkers for diagnosis/prognosis and as putative novel therapeutic targets for DKD.


2019 ◽  
Author(s):  
Zheying Zhang ◽  
Na Li ◽  
Qingzu Gao ◽  
Xinlai Qian

Background: Colorectal cancer (CRC) is a malignant tumor particularly common in developing countries. In this study, we used Weighted Gene Co-Expression Network Analysis (WGCNA) of chip data and screened hub genes in CRC to find the gene modules specifically correlated with clinical traits. Methods: WGCNA was used to identify the gene modules specifically associated with metastasis in colorectal cancer. Cytoscape software was used to construct a co-expression network. The expression of CYTH1 was determined by qRT-PCR. Results: Based on the predicted co-expression network, we identified that the turquoise module was associated with CRC clinical metastasis traits. Turquoise module genes were analyzed, and we identified the hub gene CYTH1 using Cytoscape software. Additionally, we found CYTH1’s expression was lower in CRC tissue and cells when compared with normal counterparts.


2020 ◽  
Author(s):  
Si Xu ◽  
Sha Wu ◽  
Min Yang ◽  
Xiaoning Li

Abstract Background: To provide molecular markers and potential targeted molecular therapy for diabetic nephropathy by screening hubgenes based on bioinformatic analysis. Results: We found 91 differentially expressed genes (DEGs) between diabetic nephropathy tissues and normal kidney tissues. Majority DEGs were significantly enriched in the extracellular matrix structural constituent, collagen-containing extracellular matrix. KEGG pathway analysis showed that most of DEGs participated in PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic complications. Five high relevant sub-networks and the top 16 genes according to 12 topological algorithms were screened out and also five co-expressed gene modules were identified by WGCNA. Eventually, 5 hub genes were identified by taking the intersection which might be involved in the progression of DN. And 11 microRNAs were associated with related genes in WebGestalt. Conclusions: We identified five hub genes, namely COL1A2, COL6A3, COL15A1, CLU and LUM, and their related microRNAs(especially miR29 and miR196), which might be used as diagnostic biomarkers and therapeutic targets for diabetic nephropathy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiamei Liu ◽  
Shengye Liu ◽  
Xianghong Yang

BackgroundDespite advances in the understanding of neoplasm, patients with cervical cancer still have a poor prognosis. Identifying prognostic markers of cervical cancer may enable early detection of recurrence and more effective treatment.MethodsGene expression profiling data were acquired from the Gene Expression Omnibus database. After data normalization, genes with large variation were screened out. Next, we built co-expression modules by using weighted gene co-expression network analysis to investigate the relationship between the modules and clinical traits related to cervical cancer progression. Functional enrichment analysis was also applied on these co-expressed genes. We integrated the genes into a human protein-protein interaction (PPI) network to expand seed genes and build a co-expression network. For further analysis of the dataset, the Cancer Genome Atlas (TCGA) database was used to identify seed genes and their correlation to cervical cancer prognosis. Verification was further conducted by qPCR and the Human Protein Atlas (HPA) database to measure the expression of hub genes.ResultsUsing WGCNA, we identified 25 co-expression modules from 10,016 genes in 128 human cervical cancer samples. After functional enrichment analysis, the magenta, brown, and darkred modules were selected as the three most correlated modules for cancer progression. Additionally, seed genes in the three modules were combined with a PPI network to identify 31 tumor-specific genes. Hierarchical clustering and Gepia results indicated that the expression quantity of hub genes NDC80, TIPIN, MCM3, MCM6, POLA1, and PRC1 may determine the prognosis of cervical cancer. Finally, TIPIN and POLA1 were further filtered by a LASSO model. In addition, their expression was identified by immunohistochemistry in HPA database as well as a biological experiment.ConclusionOur research provides a co-expression network of gene modules and identifies TIPIN and POLA1 as stable potential prognostic biomarkers for cervical cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Nianwu Wang ◽  
Wei Wang ◽  
Wenli Mao ◽  
Nazuke Kuerbantayi ◽  
Nuan Jia ◽  
...  

Background. The majority of lung cancers are adenocarcinomas, with the proportion being 40%. The patients are mostly diagnosed in the middle and late stages with metastasis and easy recurrence, which poses great challenge to the treatment and prognosis. Platinum-based chemotherapy is a primary treatment for adenocarcinoma, which frequently causes drug resistance. As a result, it is important to uncover the mechanisms of the chemoresponse of adenocarcinoma to platinum-based chemotherapy. Methods. The genes from the dataset GSE7880 were gathered into gene modules with the assistance of weighted gene coexpression network analysis (WGCNA), the gene trait significance absolute value (|GS|), and gene module memberships (MM). The genes from hub gene modules were calculated with a protein-protein interaction (PPI) network analysis in order to obtain a screening map of hub genes. The hub genes with both a high |GS| and MM and a high degree were selected. Furthermore, genes in the hub gene modules also went through a Gene Ontology (GO) functional enrichment analysis. Results. 11 hub genes in four hub gene modules (LY86, ACTR2, CDK2, CKAP4, KPNB1, RBBP4, SMAD4, MYL6, RPS27, TSPAN2, and VAMP2) were chosen as the significant hub genes. Through the GO function enrichment analysis, it was indicated that four modules were abundant in immune system functions (floralwhite), amino acid biosynthetic process (lightpink4), cell chemotaxis (navajowhite2), and targeting protein (paleturquoise). Four hub genes with the highest |GS| were verified by prognostic analysis.


2019 ◽  
Author(s):  
Zheying Zhang ◽  
Na Li ◽  
Qingzu Gao ◽  
Xinlai Qian

Background: Colorectal cancer (CRC) is a malignant tumor particularly common in developing countries. In this study, we used Weighted Gene Co-Expression Network Analysis (WGCNA) of chip data and screened hub genes in CRC to find the gene modules specifically correlated with clinical traits. Methods: WGCNA was used to identify the gene modules specifically associated with metastasis in colorectal cancer. Cytoscape software was used to construct a co-expression network. The expression of CYTH1 was determined by qRT-PCR. Results: Based on the predicted co-expression network, we identified that the turquoise module was associated with CRC clinical metastasis traits. Turquoise module genes were analyzed, and we identified the hub gene CYTH1 using Cytoscape software. Additionally, we found CYTH1’s expression was lower in CRC tissue and cells when compared with normal counterparts.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jin-Yu Sun ◽  
Yang Hua ◽  
Hui Shen ◽  
Qiang Qu ◽  
Jun-Yan Kan ◽  
...  

Abstract Background Calcific aortic valve disease (CAVD) is the most common subclass of valve heart disease in the elderly population and a primary cause of aortic valve stenosis. However, the underlying mechanisms remain unclear. Methods The gene expression profiles of GSE83453, GSE51472, and GSE12644 were analyzed by ‘limma’ and ‘weighted gene co-expression network analysis (WGCNA)’ package in R to identify differentially expressed genes (DEGs) and key modules associated with CAVD, respectively. Then, enrichment analysis was performed based on Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, DisGeNET, and TRRUST database. Protein–protein interaction network was constructed using the overlapped genes of DEGs and key modules, and we identified the top 5 hub genes by mixed character calculation. Results We identified the blue and yellow modules as the key modules. Enrichment analysis showed that leukocyte migration, extracellular matrix, and extracellular matrix structural constituent were significantly enriched. SPP1, TNC, SCG2, FAM20A, and CD52 were identified as hub genes, and their expression levels in calcified or normal aortic valve samples were illustrated, respectively. Conclusions This study suggested that SPP1, TNC, SCG2, FAM20A, and CD52 might be hub genes associated with CAVD. Further studies are required to elucidate the underlying mechanisms and provide potential therapeutic targets.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bojun Xu ◽  
Lei Wang ◽  
Huakui Zhan ◽  
Liangbin Zhao ◽  
Yuehan Wang ◽  
...  

Objectives. Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) throughout the world, and the identification of novel biomarkers via bioinformatics analysis could provide research foundation for future experimental verification and large-group cohort in DN models and patients. Methods. GSE30528, GSE47183, and GSE104948 were downloaded from Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs). The difference of gene expression between normal renal tissues and DN renal tissues was firstly screened by GEO2R. Then, the protein-protein interactions (PPIs) of DEGs were performed by STRING database, the result was integrated and visualized via applying Cytoscape software, and the hub genes in this PPI network were selected by MCODE and topological analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to determine the molecular mechanisms of DEGs involved in the progression of DN. Finally, the Nephroseq v5 online platform was used to explore the correlation between hub genes and clinical features of DN. Results. There were 64 DEGs, and 32 hub genes were identified, enriched pathways of hub genes involved in several functions and expression pathways, such as complement binding, extracellular matrix structural constituent, complement cascade related pathways, and ECM proteoglycans. The correlation analysis and subgroup analysis of 7 complement cascade-related hub genes and the clinical characteristics of DN showed that C1QA, C1QB, C3, CFB, ITGB2, VSIG4, and CLU may participate in the development of DN. Conclusions. We confirmed that the complement cascade-related hub genes may be the novel biomarkers for DN early diagnosis and targeted treatment.


2021 ◽  
Author(s):  
Xi Chen ◽  
Junjie Ma ◽  
Chengdang Xu ◽  
Licheng Wang ◽  
Yicong Yao ◽  
...  

Abstract BackgroundProstate cancer (PCa) and benign prostate hyperplasia (BPH) are commonly encountered diseases in elderly males. The two diseases have some commonalities: both are growth depend on hormone and respond to antiandrogen therapy. Some studies have shown that genetic factors are responsible for the occurrences of both diseases. There may be a correlation between BPH and PCa. MethodsThe GEO database can help determine the differentially expressed genes (DEGs) between BPH and PCa. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were utilized to find pathways in which the DEGs were enriched. The STRING database can provide a protein–protein interaction (PPI) network, and Cytoscape software can find hub genes in PPI network. GEPIA can be used to analyze expression and survival data for hub genes. R software was used to progress regression analysis, decision curve analysis and built nomograph. UALCAN and The Human Protein Atlas was utilized to test the results. Finally, we made clinical and cell experiments to verify the results.ResultsSixty DEGs, consisting of 15 up-regulated and 45 down-regulated genes, were found based on the GEO database. Using Cytoscape, we found 7 hub gene in the PPI network. The hub gene expression was tested on TCGA database. Except CXCR4, all hub genes expressed differently between tumor and normal samples. Meanwhile, all hub genes exclude CXCR4 has diagnostic value in predicting PCa and their mutations are risk factors leading to PCa. The expression of CSRP1, MYL9 and SNAI2 changed in different tumor stage. CSRP1 and MYH11 could affect the disease-free survival (DFS). The same results reflected in different database. In addition, we also chose three hub gene, MYC, MYL9, and SNAI2, to validate their functions in clinical specimens and cells.ConclusionThese identified hub genes can help us to understand the process and mechanism by which BPH develops into PCa and provide achievable targets for predicting which BPH patients may later develop PCa.


2020 ◽  
Author(s):  
Xi Pan ◽  
Jian-Hao Liu

Abstract Background Nasopharyngeal carcinoma (NPC) is a heterogeneous carcinoma that the underlying molecular mechanisms involved in the tumor initiation, progression, and migration are largely unclear. The purpose of the present study was to identify key biomarkers and small-molecule drugs for NPC screening, diagnosis, and therapy via gene expression profile analysis. Methods Raw microarray data of NPC were retrieved from the Gene Expression Omnibus (GEO) database and analyzed to screen out the potential differentially expressed genes (DEGs). The key modules associated with histology grade and tumor stage was identified by using weighted correlation network analysis (WGCNA). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of genes in the key module were performed to identify potential mechanisms. Candidate hub genes were obtained, which based on the criteria of module membership (MM) and high connectivity. Then we used receiver operating characteristic (ROC) curve to evaluate the diagnostic value of hub genes. The Connectivity map database was further used to screen out small-molecule drugs of hub genes. Results A total of 430 DEGs were identified based on two GEO datasets. The green gene module was considered as key module for the tumor stage of NPC via WGCNA analysis. The results of functional enrichment analysis revealed that genes in the green module were enriched in regulation of cell cycle, p53 signaling pathway, cell part morphogenesis. Furthermore, four DEGs-related hub genes in the green module were considered as the final hub genes. Then ROC revealed that the final four hub genes presented with high areas under the curve, suggesting these hub genes may be diagnostic biomarkers for NPC. Meanwhile, we screened out several small-molecule drugs that have provided potentially therapeutic goals for NPC. Conclusions Our research identified four potential prognostic biomarkers and several candidate small-molecule drugs for NPC, which may contribute to the new insights for NPC therapy.


Sign in / Sign up

Export Citation Format

Share Document