P0875INFLUENCE OF CHRONIC KIDNEY DISEASE AND LEFT VENTRICULAR HYPERTROPHY ON CHANGE IN FGF23 AND RENIN-ANGIOTENSIN-ALDOSTERONE-SYSTEM

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Kohei Okamoto ◽  
Hideki Fujii ◽  
Shunsuke Goto ◽  
Keiji Kono ◽  
Kentaro Watanabe ◽  
...  

Abstract Background and Aims Left ventricular hypertrophy (LVH) is a clinically important risk factor for mortality and often observed in patients with chronic kidney disease (CKD). Serum FGF23 levels are elevated in CKD patients, and the relationship between elevated FGF23 and LVH has been reported in the previous studies. However, whether elevated FGF23 is a cause or result of LVH and whether FGF23 directly or indirectly affects LVH remain unclear. Therefore, we investigated changes in heart weight, CKD-mineral and bone disorder (MBD) parameters, including FGF23, and renin-angiotensin-aldosterone system (RAAS) related-factors in the setting of LVH and CKD using a mouse model. Method In the present study, twenty-four C57BL/6J mice were used and divided into 4 groups; control group (N=6), CKD group (N=6), LVH group (N=6), and LVH+CKD group (N=6). The mice in the CKD group underwent left 2/3 nephrectomy at 11 weeks of age and right nephrectomy at 12 weeks of age. Those in the LVH group underwent transverse aortic constriction (TAC) at 10 weeks of age. Those in the LVH+CKD group, TAC at 10 weeks of age, and left 2/3 nephrectomy at 11 weeks of age, and right nephrectomy at 12 weeks of age were performed. At 16 weeks of age, echocardiography was performed for all the mice, and they were sacrificed for blood and urine analysis, histopathological analysis and evaluating mRNA expressions of CKD-MBD- and RAAS-related factors in the heart. Results The systolic blood pressure was significantly higher in the LVH+CKD group and the CKD group than in the control group. The heart weight/body weight ratio in the LVH+CKD group was the highest, and that in the LVH was higher than that in the CKD group. Although serum creatinine and phosphate levels increased in CKD condition, those were comparable between the CKD and LVH+CKD groups. The urinary albumin excretion also increased in the CKD and LVH+CKD groups compared to the LVH and control groups. Serum FGF23 levels increased in the LVH and CKD group compared to the control group, and those in the LVH+CKD group were the highest among all the study groups. The cardiac mRNA expressions of FGF23, angiotensinogen (ANG), angiotensin type 1 receptor (AT1R), and angiotensin-converting enzyme (ACE) were also increased by induction of LVH and CKD, and those in the LVH+CKD group significantly increased compared to other groups. Heart weight/body weight ratio was significantly correlated with serum FGF23 levels and mRNA expression of FGF23, ANG, AT1R, ACE. In addition, significant correlations of serum FGF23 levels and cardiac mRNA expression of FGF23 with cardiac mRNA expressions of RAAS-related factors were observed. Conclusion Our results suggest that serum FGF23 levels and cardiac mRNA expression of FGF23 increase with the development of LVH and CKD and the changes is possibly enhanced through the colocalized activation of RAAS.

2010 ◽  
Vol 299 (5) ◽  
pp. H1348-H1356 ◽  
Author(s):  
Craig A. Emter ◽  
Christopher P. Baines

Cardiac hypertrophy in response to hypertension or myocardial infarction is a pathological indicator associated with heart failure (HF). A central component of the remodeling process is the loss of cardiomyocytes via cell death pathways regulated by the mitochondrion. Recent evidence has indicated that exercise training can attenuate or reverse pathological remodeling, creating a physiological phenotype. The purpose of this study was to examine left ventricular (LV) function, remodeling, and cardiomyocyte mitochondrial function in aortic-banded (AB) sedentary (HFSED; n = 6), AB exercise-trained (HFTR, n = 5), and control sedentary ( n = 5) male Yucatan miniature swine. LV hypertrophy was present in both AB groups before the start of training, as indicated by increases in LV end-diastolic volume, LV end-systolic volume (LVESV), and LV end-systolic dimension (LVESD). Exercise training (15 wk) prevented further increases in LVESV and LVESD ( P < 0.05). The heart weight-to-body weight ratio, LV + septum-to-body weight ratio, LV + septum-to-right ventricle ratio, and cardiomyocyte cross-sectional area were increased in both AB groups postmortem regardless of training status. Preservation of LV function after exercise training, as indicated by the maintenance of fractional shortening, ejection fraction, and mean wall shortening and increased stroke volume, was associated with an attenuation of the increased LV fibrosis (23%) and collagen (36%) observed in HFSED animals. LV mitochondrial dysfunction, as measured by Ca2+-induced mitochondrial permeability transition, was increased in HFSED ( P < 0.05) but not HFTR animals. In conclusion, low-intensity interval exercise training preserved LV function as exemplified by an attenuation of fibrosis, maintenance of a positive inotropic state, and inhibition of mitochondrial dysfunction, providing further evidence of the therapeutic potential of exercise in a clinical setting.


2019 ◽  
Vol 116 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Hairuo Lin ◽  
Yang Li ◽  
Hailin Zhu ◽  
Qiancheng Wang ◽  
Zhenhuan Chen ◽  
...  

Abstract Aims Proton pump inhibitors (PPIs) are widely used in patients receiving percutaneous coronary intervention to prevent gastric bleeding, but whether PPIs are beneficial for the heart is controversial. Here, we investigated the effects of lansoprazole on cardiac hypertrophy and heart failure, as well as the underlying mechanisms. Methods and results Adult male C57 mice were subjected to transverse aortic constriction (TAC) or sham surgery and then were treated with lansoprazole or vehicle for 5 weeks. In addition, cultured neonatal rat ventricular cardiomyocytes and fibroblasts were exposed to angiotensin II in the presence or absence of lansoprazole. At 5 weeks after TAC, the heart weight/body weight ratio was lower in lansoprazole-treated mice than in untreated mice, as was the lung weight/body weight ratio, while left ventricular (LV) fractional shortening and the maximum and minimum rates of change of the LV pressure were higher in lansoprazole-treated mice, along with less cardiac fibrosis. In cultured cardiomyocytes, lansoprazole inhibited angiotensin II-induced protein synthesis and hypertrophy, as well as inhibiting proliferation of fibroblasts. Lansoprazole decreased myocardial levels of phosphorylated Akt, phosphorylated glycogen synthase kinase 3β, and active β-catenin in TAC mice and in angiotensin II-stimulated cardiomyocytes. After overexpression of active β-catenin or knockdown of H+/K+-ATPase α-subunit, lansoprazole still significantly attenuated myocyte hypertrophy. Conclusion Lansoprazole inhibits cardiac remodelling by suppressing activation of the Akt/GSK3β/β-catenin pathway independent of H+/K+-ATPase inhibition, and these findings may provide a novel insight into the pharmacological effects of PPIs with regard to alleviation of cardiac remodelling.


2021 ◽  
Author(s):  
Kohei Okamoto ◽  
Hideki Fujii ◽  
Shunsuke Goto ◽  
Kentaro Watanabe ◽  
Keiji Kono ◽  
...  

Abstract Serum fibroblast growth factor 23 (FGF23) levels and the renin-angiotensin-aldosterone system (RAAS) are elevated in chronic kidney disease (CKD) patients, and their association with left ventricular hypertrophy (LVH) has been reported. However, whether the FGF23 elevation is the cause or result of LVH remains unclear. At 10 weeks, male C57BL/6J mice were divided into four groups: Sham, CKD (5/6 nephrectomy), LVH (transaortic constriction), and CKD/LVH group. At 16 weeks, the mice were sacrificed, and blood and urine, cardiac expressions of FGF23 and RAAS-related factors, and cardiac histological analyses were performed. Heart weight, serum FGF23 levels, and cardiac expression of FGF23 and RAAS-related factors, except for angiotensin-converting enzyme 2, more increased in the CKD/LVH group compared to the other groups. A significant correlation between LVH and cardiac expressions of FGF23 and RAAS-related factors was observed. Furthermore, there was a significantly close correlation of the cardiac expression of FGF23 with LVH and RAAS-related factors. The coexisting CKD and LVH increased serum and cardiac FGF23 and RAAS-related factors, and there was a significant correlation between them. A close correlation of cardiac, but not serum FGF23, with LVH and RAAS suggested that local FGF23 may be associated with LVH and the RAAS activation.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Man Zhu ◽  
Lijun Shi

Objective The type II calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) signal plays a key role in the development of cardiac hypertrophy. This study used CaMKIIδ as an entry point to investigate the mechanism of moderate-intensity aerobic exercise affecting myocardial function. Methods Male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs), 12 weeks age, were randomly divided into aerobic exercise group (SHR-EX/WKY-EX) and sedentary control group (SHR-SED/WKY-SED), with 12 rats in each group. The aerobic exercise group conducted an 8-week treadmill exercise training with a slope of 0°, 20m/min (about 55-65% of maximal aerobic velocity), 60min/day, and 5d/wk. The control group did not exercise. The body weight of each group of rats was measured weekly and the blood pressure of the rats was measured non-invasively. After 8 weeks, the hearts of SHR-EX group, WKY-EX group, SHR-SED group and WKY-SED group were weighed, and then myocardial tissue sections were taken for HE staining to observe the thickness of the ventricular wall and the morphology of myocardial cells. The expression of CaMKIIδ and MEF2 in each group was determined by Western blotting. Results (1) The body weight of SHR-SED group was significantly higher than that of SHR-EX group (p<0.01), and the heart weight of rats in exercise group changed significantly. The WKY-EX group had greater heart weight than the WKY-SED group, and the SHR-SED group was heavier than the SHR-EX group (p<0.05). The heart weight/body weight ratio of the WKY-EX group was significantly higher than that of the WKY-SED group (p<0.01). The heart weight/body weight ratio of SHR-EX group and SHR-SED group was higher than that of WKY-EX group and WKY-SED group (p<0.01). (2) Compared with the WKY-SED group, the SHR-SED group had loose interstitial cells and increased single cell area. The SHR-EX group is more compact than the SHR-SED group, and the cell cross-sectional area is reduced. (3) The expression of CaMKIIδ protein in SHR-EX group was significantly lower than that in SHR-SED group (p<0.01), but the expression level of CaMKIIδ in WKY-EX group was significantly higher than that in WKY-SED group (p<0.01). The expression level of CaMKIIδ was significantly higher in the SHR-SED group than in the WKY-SED group. In addition, the expression of MEF2 protein in SHR-EX group and WKY-SED group was significantly lower than that in SHR-SED group (p<0.01), while the MEF2 expression level in WKY-EX group was higher than WKY-SED group and SHR-EX group (p<0.05). Conclusions There is an interaction between aerobic exercise and hypertension. Aerobic exercise can effectively delay the development of hypertensive cardiac hypertrophy by regulating the expression of CaMKIIδ and MEF2 protein in the myocardium, but it can also cause cardiac hypertrophy in normal heart. It is one of the important mechanisms affecting the myocardial morphology and function.    


1994 ◽  
Vol 266 (6) ◽  
pp. H2468-H2475 ◽  
Author(s):  
H. A. Rockman ◽  
S. P. Wachhorst ◽  
L. Mao ◽  
J. Ross

There is increasing evidence that the renin-angiotensin system may play a important role in cardiac hypertrophy. To assess the role of angiotensin II in the induction of cardiac hypertrophy, three groups of adult mice were subjected to left ventricular pressure overload by transverse aortic constriction (TAC). For the next 7 days the groups received either the specific angiotensin II subtype 1 receptor (AT1) antagonist (losartan, 1.05 g/l; n = 17), an angiotensin enzyme inhibitor (captopril, 2 g/l; n = 17), or no treatment (n = 22) administered in the drinking water and compared with three similarly treated sham-operated groups (n = 7 each). TAC resulted in a significant increase in heart weight-to-body weight ratio (0.634 +/- 0.087 vs. 0.525 +/- 0.039, g/g x 100, P < 0.05), which was prevented by losartan (0.506 +/- 0.069, g/g x 100, P < 0.0001) despite similar hemodynamic load (proximal systolic pressure 146 +/- 31 vs. 136 +/- 32 mmHg, untreated vs. losartan, P = NS). Proximal systolic pressure was positively correlated with the development of ventricular hypertrophy. In the presence of AT1-receptor blockade, the increase in heart weight-to-body weight ratio at any given systolic pressure was significantly attenuated compared with untreated TAC mice. The increase in heart weight-to-body weight ratio was also significantly attenuated by captopril compared with untreated banded controls (0.542 +/- 0.091, g/g x 100, P = 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 31 (2) ◽  
pp. 87-98 ◽  
Author(s):  
Xianli Wang ◽  
Qian Wang ◽  
Wei Guo ◽  
Yi Zhun Zhu

HF (heart failure) after MI (myocardial infarction) is a major cause of morbidity and mortality worldwide. Recent studies have shown that hydrogen sulfide (H2S) has cardioprotective effects. Hence, we aimed to elucidate the potential effects of H2S on HF after MI in rats. The HF model after MI was made by ligating the left anterior descending coronary artery. HF groups and sham-operated groups of rats were treated with vehicle, sodium hydrosulfide (NaHS) or PAG (propagylglycine). Equal volumes of saline, 3.136 mg·kg−1·day−1 NaHS or 37.5 mg·kg−1·day−1 PAG, were intraperitoneally injected into rats for 6 weeks after operation. Survival, lung-to-body weight ratio and left ventricular haemodynamic parameters were measured. The protein and gene expression of Bcl-2, Bax, caspase 3 and cytochrome c were analysed by Western blotting and RT–PCR (reverse transcription–PCR). TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) and EM (electron microscopy) were used to examine apoptosis of heart tissues. NaHS was found to improve the survival and lower the lung-to-body weight ratio. It increased the LVSP (left ventricular systolic pressure) and the maximum rate of pressure and decreased LVEDP (left ventricular end-diastolic pressure). Furthermore, NaHS promoted Bcl-2 protein and mRNA expression and demoted Bax, caspase 3 protein and mRNA expression in HF rats. We also showed that NaHS decreased the leakage of cytochrome c protein from the mitochondria to the cytoplasm. Histological observation by TUNEL and EM proved that NaHS inhibited cardiac apoptosis in HF hearts and improved mitochondrial derangements, but that PAG aggravated those indices. Hence, H2S has protective effects in HF rats.


2009 ◽  
Vol 24 (4) ◽  
pp. 251-255 ◽  
Author(s):  
Honório Sampaio Menezes ◽  
Cláudio Galeano Zettler ◽  
Alice Calone ◽  
Jackson Borges Corrêa ◽  
Carla Bartuscheck ◽  
...  

PURPOSE: To compare body weight and length, heart weight and length, heart-to-body weight ratio, glycemia, and morphometric cellular data of offspring of diabetic rats (ODR) and of normal rats (control). METHODS: Diabetes was induced in 3 pregnant Wistar rats, bearing 30 rats, on the 11th day after conception by intraperitoneal injection of 50 mg/kg of streptozotocin. Six normal pregnant Wistar rats, bearing 50 rats, made up the control group. Morphometric data were obtained using a scale for the weight, length, heart and body measurements. Morphometric cellular data were obtained by a computer assisted method applied to the measurements of myocytes. Statistical analysis utilized Student's t-test, ANOVA and Levene test. RESULTS: Control offspring had greater mean body weight and length than offspring of diabetic rats (p < 0.001). Heart weight and length and heart-to-body ratios of newborn rats differed between groups at birth (p < 0.001), but showed no difference at 21 days. Mean nuclei area and perimetric value of the myocytes decrees throughout the first 21 days of life (p < 0.01) in the diabetic group. CONCLUSIONS: Heart hypertrophy on the offspring of diabetic rats at birth was demonstrated by the significant difference between the groups. After the eleventh day, no difference was found, which confirmed regression of cardiomegaly. The significant difference between the first and the 21th day of life, for nuclei area feature, demonstrate regression of cardiac hypertrophy in the offspring of diabetic rats.


2016 ◽  
Vol 36 (9) ◽  
pp. 901-909 ◽  
Author(s):  
D Sheela ◽  
R Vijayaraghavan ◽  
S Senthilkumar

Buprenorphine drug cartridge was made for autoinjector device for use in emergency and critical situations to reduce the morbidity and mortality. Water-filled cartridges were prepared and buprenorphine was injected aseptically in the cartridge, to make 0.05 and 0.10 mg/mL. Rats were injected intraperitoneally, buprenorphine (0.3 and 0.6 mg/kg), repeatedly with the autoinjector and compared with manual injection (7 days and 14 days) using various haematological and biochemical parameters. No significant change was observed in the body weight, organ to body weight ratio and haematological variables in any of the experimental groups compared with the control group. Except serum urea and aspartate aminotransferase, no significant change was observed in glucose, cholesterol, triglycerides, bilirubin, protein, albumin, creatinine, uric acid, alanine aminotransferase, gamma glutamyltransferase and alkaline phosphatase. The autoinjectors deliver the drugs with spray effect and force for faster absorption. In the present study, the autoinjector meant for intramuscular injection was injected intraperitoneally in rats, and the drug was delivered with force on the vital organs. No significant difference was observed in the autoinjector group compared to the manual group showing tolerability and safety of the buphrenorphine autoinjector. This study shows that buprenorphine autoinjector can be considered for further research work.


1986 ◽  
Vol 60 (5) ◽  
pp. 1673-1679 ◽  
Author(s):  
S. N. Levine ◽  
G. T. Kinasewitz

To investigate potential mechanisms underlying the enhanced myocardial performance consequent to exercise training, the adrenergic receptors of myocardial tissue and Ca2+ uptake into sarcoplasmic reticulum-enriched fractions from exercise conditioned animals were compared with that of sedentary controls. Female Wistar rats were exercised by swimming 30 min (5 days/wk) for 12 wk. Exercise conditioning was effective in producing myocardial hypertrophy, as reflected by an increase in heart weight (1.179 +/- 0.022 vs. 1.031 +/- 0.020 g, P less than 0.001) and heart weight-to-body weight ratio (3.29 +/- 0.06 vs. 2.77 +/- 0.05 X 10(-3), P less than 0.001) but no difference in body weight. Despite the myocardial hypertrophy, neither the affinity nor the density of the alpha 1-adrenergic receptors or the beta-adrenergic receptors determined by Scatchard analysis of the ligands [3H]prazosin and [3H]dihydroalprenolol were significantly different between the two groups. The basal Ca2+ uptake into the sarcoplasmic reticulum was also similar (9.90 +/- 0.97 vs. 9.04 +/- 0.75 nmol/mg protein/min), but the addition of calmodulin produced a significantly greater increment in Ca2+ uptake into sarcoplasmic reticulum from the exercised-conditioned animals (1.90 +/- 0.23 vs. 1.21 +/- 0.19 nmol/mg protein/min, P less than 0.03). The adenosine triphosphatase (ATPase) activities of the sarcoplasmic reticulum-enriched fractions of the two groups were similar. We conclude that exercise conditioning produces an enhancement of calmodulin-mediated calcium uptake that is independent of any effect on Ca2+-ATPase.


EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
J Obergassel ◽  
S N Kabir ◽  
M O"reilly ◽  
L C Sommerfeld ◽  
C O"shea ◽  
...  

Abstract Funding Acknowledgements Supported by EU [CATCH ME] 633196, British Heart Foundation FS/13/43/30324, AA/18/2/34218 LF, PK, DFG FA413 LF, Studienstiftung to JO. Background Studying cardiac electrophysiology in isolated perfused beating murine hearts is a well-established method. The range of normal values for left atrial action potential durations (LA-APD), activation times (LA-AT) and effective refractory periods (atrial ERP) in murine wildtype (WT) is not well known. Purpose This study aimed to establish reference values for LA-APD, LA-AT and atrial ERP and to identify factors that influence these electrophysiological parameters in wildtype (WT) mice. Method We combined results from isolated beating heart Langendorff experiments carried out in WT between 2005 and 2019 using an octopolar catheter inserted into the right atrium and a monophasic action potential electrode recording from the LA epicardium. Electrophysiological parameters (LA-APD at 50%, 70%, 90% repolarization (APD50, APD70, APD90), LA-AT and atrial ERP) at different pacing cycle lengths (PCL) were summarized. We analyzed effects of PCL, genetic background, age, gender, heart weight to body weight ratio (HW/BW), LA weight to body weight ratio (LAW/BW) as well as coronary flow and temperature as experimental conditions. Results Electrophysiological parameters from 222 isolated hearts (114 female, mean age 6.6 ± 0.25 months, range 2.47-17.7 months) of different backgrounds (77 C57BL/6, 23 FVB/N, 33 MF1, 69 129/Sv and 20 Swiss agouti) were combined. Coronary flow rate, flow temperature and start of isolation to cannulation time were constant experimental conditions over the timespan of experiments. LA-APD was longer while LA-AT decreased with longer PCL throughout all genetic backgrounds (Figure 1A). Genetic background showed strong effects on all electrophysiological parameters. LA activation was delayed in 129/Sv compared to other backgrounds (Figure 1D). LA-APD70 and atrial ERP were significantly shorter in Swiss agouti background compared to others. LA-APD70 was also significantly prolonged in 129/Sv background compared to MF1 (Figure 1C). Atrial ERP was longer in FVB/N compared to other backgrounds. Age effects were compared in groups. Atrial ERP was significantly longer in mice ≤ 3 months compared to all older mice. Atrial ERP was also significantly prolonged (+ 3.4ms, + 13.5%) in female mice compared to males (Figure 1B). Conclusion This dataset summarizes left atrial electrophysiological parameters in the beating mouse heart and can serve as a reference for design and interpretation of electrophysiological experiments in murine models of commonly used genetic backgrounds. We confirm that cycle length, genetic background, age and gender affect atrial electrophysiological parameters. Awareness of these will support successful experimental design. Abstract Figure 1


Sign in / Sign up

Export Citation Format

Share Document