scholarly journals PO-148 Effect of Aerobic Exercise on the Expression of CaMKIIδ/MEF2 in Hypertensive and Physiological Cardiac Hypertrophy

2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Man Zhu ◽  
Lijun Shi

Objective The type II calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) signal plays a key role in the development of cardiac hypertrophy. This study used CaMKIIδ as an entry point to investigate the mechanism of moderate-intensity aerobic exercise affecting myocardial function. Methods Male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs), 12 weeks age, were randomly divided into aerobic exercise group (SHR-EX/WKY-EX) and sedentary control group (SHR-SED/WKY-SED), with 12 rats in each group. The aerobic exercise group conducted an 8-week treadmill exercise training with a slope of 0°, 20m/min (about 55-65% of maximal aerobic velocity), 60min/day, and 5d/wk. The control group did not exercise. The body weight of each group of rats was measured weekly and the blood pressure of the rats was measured non-invasively. After 8 weeks, the hearts of SHR-EX group, WKY-EX group, SHR-SED group and WKY-SED group were weighed, and then myocardial tissue sections were taken for HE staining to observe the thickness of the ventricular wall and the morphology of myocardial cells. The expression of CaMKIIδ and MEF2 in each group was determined by Western blotting. Results (1) The body weight of SHR-SED group was significantly higher than that of SHR-EX group (p<0.01), and the heart weight of rats in exercise group changed significantly. The WKY-EX group had greater heart weight than the WKY-SED group, and the SHR-SED group was heavier than the SHR-EX group (p<0.05). The heart weight/body weight ratio of the WKY-EX group was significantly higher than that of the WKY-SED group (p<0.01). The heart weight/body weight ratio of SHR-EX group and SHR-SED group was higher than that of WKY-EX group and WKY-SED group (p<0.01). (2) Compared with the WKY-SED group, the SHR-SED group had loose interstitial cells and increased single cell area. The SHR-EX group is more compact than the SHR-SED group, and the cell cross-sectional area is reduced. (3) The expression of CaMKIIδ protein in SHR-EX group was significantly lower than that in SHR-SED group (p<0.01), but the expression level of CaMKIIδ in WKY-EX group was significantly higher than that in WKY-SED group (p<0.01). The expression level of CaMKIIδ was significantly higher in the SHR-SED group than in the WKY-SED group. In addition, the expression of MEF2 protein in SHR-EX group and WKY-SED group was significantly lower than that in SHR-SED group (p<0.01), while the MEF2 expression level in WKY-EX group was higher than WKY-SED group and SHR-EX group (p<0.05). Conclusions There is an interaction between aerobic exercise and hypertension. Aerobic exercise can effectively delay the development of hypertensive cardiac hypertrophy by regulating the expression of CaMKIIδ and MEF2 protein in the myocardium, but it can also cause cardiac hypertrophy in normal heart. It is one of the important mechanisms affecting the myocardial morphology and function.    

2016 ◽  
Vol 36 (9) ◽  
pp. 901-909 ◽  
Author(s):  
D Sheela ◽  
R Vijayaraghavan ◽  
S Senthilkumar

Buprenorphine drug cartridge was made for autoinjector device for use in emergency and critical situations to reduce the morbidity and mortality. Water-filled cartridges were prepared and buprenorphine was injected aseptically in the cartridge, to make 0.05 and 0.10 mg/mL. Rats were injected intraperitoneally, buprenorphine (0.3 and 0.6 mg/kg), repeatedly with the autoinjector and compared with manual injection (7 days and 14 days) using various haematological and biochemical parameters. No significant change was observed in the body weight, organ to body weight ratio and haematological variables in any of the experimental groups compared with the control group. Except serum urea and aspartate aminotransferase, no significant change was observed in glucose, cholesterol, triglycerides, bilirubin, protein, albumin, creatinine, uric acid, alanine aminotransferase, gamma glutamyltransferase and alkaline phosphatase. The autoinjectors deliver the drugs with spray effect and force for faster absorption. In the present study, the autoinjector meant for intramuscular injection was injected intraperitoneally in rats, and the drug was delivered with force on the vital organs. No significant difference was observed in the autoinjector group compared to the manual group showing tolerability and safety of the buphrenorphine autoinjector. This study shows that buprenorphine autoinjector can be considered for further research work.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Soheb Anwar Mohammed ◽  
Bugga Paramesha ◽  
Yashwant Kumar ◽  
Ubaid Tariq ◽  
Sudheer Kumar Arava ◽  
...  

Allylmethylsulfide (AMS) is a novel sulfur metabolite found in the garlic-fed serum of humans and animals. In the present study, we have observed that AMS is safe on chronic administration and has a potential antihypertrophic effect. Chronic administration of AMS for 30 days did not cause any significant differences in the body weight, electrocardiogram, food intake, serum biochemical parameters, and histopathology of vital organs. Single-dose pharmacokinetics of AMS suggests that AMS is rapidly metabolized into Allylmethylsulfoxide (AMSO) and Allylmethylsulfone (AMSO2). To evaluate the efficacy of AMS, cardiac hypertrophy was induced by subcutaneous implantation of ALZET® osmotic minipump containing isoproterenol (~5 mg/kg/day), cotreated with AMS (25 and 50 mg/kg/day) and enalapril (10 mg/kg/day) for 2 weeks. AMS and enalapril significantly reduced cardiac hypertrophy as studied by the heart weight to body weight ratio and mRNA expression of fetal genes (ANP and β-MHC). We have observed that TBARS, a parameter of lipid peroxidation, was reduced and the antioxidant enzymes (glutathione, catalase, and superoxide dismutase) were improved in the AMS and enalapril-cotreated hypertrophic hearts. The extracellular matrix (ECM) components such as matrix metalloproteinases (MMP2 and MMP9) were significantly upregulated in the diseased hearts; however, with the AMS and enalapril, it was preserved. Similarly, caspases 3, 7, and 9 were upregulated in hypertrophic hearts, and with the AMS and enalapril treatment, they were reduced. Further to corroborate this finding with in vitro data, we have checked the nuclear expression of caspase 3/7 in the H9c2 cells treated with isoproterenol and observed that AMS cotreatment reduced it significantly. Histopathological investigation of myocardium suggests AMS and enalapril treatment reduced fibrosis in hypertrophied hearts. Based on our experimental results, we conclude that AMS, an active metabolite of garlic, could reduce isoproterenol-induced cardiac hypertrophy by reducing oxidative stress, apoptosis, and stabilizing ECM components.


2019 ◽  
Vol 69 (4) ◽  
pp. 63-70
Author(s):  
Piotr Siermontowski ◽  
Wojciech Kozłowski ◽  
Katarzyna Pleskacz

AbstractThe prerequisite of development of pulmonary barotrauma [PB] is retention of the breathing mix in the lungs during a sudden decrease in external pressure or its administration into the airways under increased pressure or in a volume exceeding the maximum lung capacity. In such cases, the pulmonary parenchyma ruptures and air enters both the pleural cavity and/or the lumen of ruptured blood vessels located in the alveolar septa. The result is permanent disruption of the pulmonary parenchyma.The aim of the study was to assess the influence of post-PB lesions on the heart muscle and the importance of hyperbaric treatment on the exacerbation of such lesions in the heart. The hearts of 35 rabbits were used in the study. In animals of the experimental group, PB was induced in the pressure chamber using the proprietary method described in previous publications. Part of the animals in this group were treated with air hyperbaria. The comparison group consisted of animals, which did not undergo PB during a simulated dive. All animals were weighed, observed for four weeks and then put to death following the experiment. In autopsy, among others, whole hearts were collected and weighed after fixation. Subsequently, the C/S ratio, i.e. the body to heart weight ratio, was calculated. The measurement results were subject to statistical analysis. A statistically significant increase in the C/S ratio was found, indicating an increase in the share of heart weight in the total body weight in the group of animals with PB not treated with air hyperbaria as compared to the control group.


1994 ◽  
Vol 87 (2) ◽  
pp. 239-243 ◽  
Author(s):  
Stephen B. Harrap ◽  
Shari R. Datodi ◽  
Emma K. Crapper ◽  
Leon A. Bach

1. Growth hormone may influence cardiac growth during post-natal maturation or in response to hypertension, and the growth-hormone deficient dwarf rat model offers an opportunity to study this question. 2. We compared the blood pressure and heart weight of dwarf rats and Fischer (F344) control rats in early adulthood, after two hypertensive stimuli: unilateral renal ischaemia (two-kidney, one-clip) or the administration of deoxycorticosterone acetate and saline drinking fluid. 3. In untreated animals at 13 weeks of age the body weight of dwarf rats was significantly less than that of F344 rats, but the mean arterial pressure was similar. Although the hearts of dwarf rats were smaller than those of F344 rats, the heart weight/body weight ratio was significantly greater in dwarf rats. 4. Both dwarf and F344 rats developed similar hypertensive mean arterial pressures 5 weeks after left renal artery clipping or treatment with deoxycorticosterone acetate salt. The heart weights of hypertensive dwarf and F344 rats were equivalent, indicating a proportionally greater increase in cardiac size in dwarf rats for the same rise in blood pressure. 5. The plasma insulin-like growth factor-I level was markedly lower in dwarf than in F344 rats, and hypertension did not have any significant effects on these levels. 6. These findings indicate that the developmental increase in blood pressure and heart size in growing animals and the adaptive cardiac hypertrophy accompanying hypertension are not affected by growth hormone deficiency.


Bioimpacts ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 251-257
Author(s):  
Majid Gholipour ◽  
Arezoo Tabrizi

Introduction: The role of Hippo signaling pathway, which was identified by genetic studies as a key regulator for tissue growth and organ size, in promoting physiological cardiac hypertrophy has not been investigated. Methods: Fourteen male Wistar rats were randomly assigned to the exercise and control groups. The exercise group ran 1 hour per day, 5 days/week, at about 65%-75% VO2max on the motor-driven treadmill with 15º slope, and the control group ran 15 min/d, 2 days/week at 9 m/min (0º inclination), throughout the eight-week experimental period. Forty-eight hours after the last session, hearts were dissected and left ventricles were weighed and stored for subsequent RT-PCR analysis. Results: Despite a significant increase in the MAP4k1 expression levels in the exercise group (P = 0.001), the Mst1 expression was inhibited compared to the control group (P < 0.001) which was followed by suppression of Lats1 expression (P = 0.001). Compared with the control group, significant increases were observed in heart weight/body weight (P = 0.024) and left ventricular weight/body weight (P = 0.034) ratios in the exercise group. The H&E staining confirmed the cardiac hypertrophy that may be partly due to a significant increase in Yap1 expression level compared with the control group (P<0.001), which was confirmed by Western blot analysis. Conclusion: Increased MAP4K1 expression did not influence Lats1 activation. The exercise training protocol suppressed Mst1 and Lats1 (Hippo pathway) and caused an increase in Yap1 expression level, which led to physiological cardiac hypertrophy in healthy rats. Further studies are suggested to apply this exercise protocol for the prevention and/or rehabilitation of cardiovascular disease and health promotion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoying Zhang ◽  
Zhiying Zhang ◽  
Pengxiang Wang ◽  
Yiwei Han ◽  
Lijun Liu ◽  
...  

Bawei Chenxiang Wan (BCW), a well-known traditional Chinese Tibetan medicine formula, is effective for the treatment of acute and chronic cardiovascular diseases. In the present study, we investigated the effect of BCW in cardiac hypertrophy and underlying mechanisms. The dose of 0.2, 0.4, and 0.8 g/kg BCW treated cardiac hypertrophy in SD rat model induced by isoprenaline (ISO). Our results showed that BCW (0.4 g/kg) could repress cardiac hypertrophy, indicated by macro morphology, heart weight to body weight ratio (HW/BW), left ventricle heart weight to body weight ratio (LVW/BW), hypertrophy markers, heart function, pathological structure, cross-sectional area (CSA) of myocardial cells, and the myocardial enzymes. Furthermore, we declared the mechanism of BCW anti-hypertrophy effect was associated with activating adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/peroxisome proliferator–activated receptor-α (PPAR-α) signals, which regulate carnitine palmitoyltransferase1β (CPT-1β) and glucose transport-4 (GLUT-4) to ameliorate glycolipid metabolism. Moreover, BCW also elevated mitochondrial DNA-encoded genes of NADH dehydrogenase subunit 1(ND1), cytochrome b (Cytb), and mitochondrially encoded cytochrome coxidase I (mt-co1) expression, which was associated with mitochondria function and oxidative phosphorylation. Subsequently, knocking down AMPK by siRNA significantly can reverse the anti-hypertrophy effect of BCW indicated by hypertrophy markers and cell surface of cardiomyocytes. In conclusion, BCW prevents ISO-induced cardiomyocyte hypertrophy by activating AMPK/PPAR-α to alleviate the disturbance in energy metabolism. Therefore, BCW can be used as an alternative drug for the treatment of cardiac hypertrophy.


2019 ◽  
Vol 116 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Hairuo Lin ◽  
Yang Li ◽  
Hailin Zhu ◽  
Qiancheng Wang ◽  
Zhenhuan Chen ◽  
...  

Abstract Aims Proton pump inhibitors (PPIs) are widely used in patients receiving percutaneous coronary intervention to prevent gastric bleeding, but whether PPIs are beneficial for the heart is controversial. Here, we investigated the effects of lansoprazole on cardiac hypertrophy and heart failure, as well as the underlying mechanisms. Methods and results Adult male C57 mice were subjected to transverse aortic constriction (TAC) or sham surgery and then were treated with lansoprazole or vehicle for 5 weeks. In addition, cultured neonatal rat ventricular cardiomyocytes and fibroblasts were exposed to angiotensin II in the presence or absence of lansoprazole. At 5 weeks after TAC, the heart weight/body weight ratio was lower in lansoprazole-treated mice than in untreated mice, as was the lung weight/body weight ratio, while left ventricular (LV) fractional shortening and the maximum and minimum rates of change of the LV pressure were higher in lansoprazole-treated mice, along with less cardiac fibrosis. In cultured cardiomyocytes, lansoprazole inhibited angiotensin II-induced protein synthesis and hypertrophy, as well as inhibiting proliferation of fibroblasts. Lansoprazole decreased myocardial levels of phosphorylated Akt, phosphorylated glycogen synthase kinase 3β, and active β-catenin in TAC mice and in angiotensin II-stimulated cardiomyocytes. After overexpression of active β-catenin or knockdown of H+/K+-ATPase α-subunit, lansoprazole still significantly attenuated myocyte hypertrophy. Conclusion Lansoprazole inhibits cardiac remodelling by suppressing activation of the Akt/GSK3β/β-catenin pathway independent of H+/K+-ATPase inhibition, and these findings may provide a novel insight into the pharmacological effects of PPIs with regard to alleviation of cardiac remodelling.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Kohei Okamoto ◽  
Hideki Fujii ◽  
Shunsuke Goto ◽  
Keiji Kono ◽  
Kentaro Watanabe ◽  
...  

Abstract Background and Aims Left ventricular hypertrophy (LVH) is a clinically important risk factor for mortality and often observed in patients with chronic kidney disease (CKD). Serum FGF23 levels are elevated in CKD patients, and the relationship between elevated FGF23 and LVH has been reported in the previous studies. However, whether elevated FGF23 is a cause or result of LVH and whether FGF23 directly or indirectly affects LVH remain unclear. Therefore, we investigated changes in heart weight, CKD-mineral and bone disorder (MBD) parameters, including FGF23, and renin-angiotensin-aldosterone system (RAAS) related-factors in the setting of LVH and CKD using a mouse model. Method In the present study, twenty-four C57BL/6J mice were used and divided into 4 groups; control group (N=6), CKD group (N=6), LVH group (N=6), and LVH+CKD group (N=6). The mice in the CKD group underwent left 2/3 nephrectomy at 11 weeks of age and right nephrectomy at 12 weeks of age. Those in the LVH group underwent transverse aortic constriction (TAC) at 10 weeks of age. Those in the LVH+CKD group, TAC at 10 weeks of age, and left 2/3 nephrectomy at 11 weeks of age, and right nephrectomy at 12 weeks of age were performed. At 16 weeks of age, echocardiography was performed for all the mice, and they were sacrificed for blood and urine analysis, histopathological analysis and evaluating mRNA expressions of CKD-MBD- and RAAS-related factors in the heart. Results The systolic blood pressure was significantly higher in the LVH+CKD group and the CKD group than in the control group. The heart weight/body weight ratio in the LVH+CKD group was the highest, and that in the LVH was higher than that in the CKD group. Although serum creatinine and phosphate levels increased in CKD condition, those were comparable between the CKD and LVH+CKD groups. The urinary albumin excretion also increased in the CKD and LVH+CKD groups compared to the LVH and control groups. Serum FGF23 levels increased in the LVH and CKD group compared to the control group, and those in the LVH+CKD group were the highest among all the study groups. The cardiac mRNA expressions of FGF23, angiotensinogen (ANG), angiotensin type 1 receptor (AT1R), and angiotensin-converting enzyme (ACE) were also increased by induction of LVH and CKD, and those in the LVH+CKD group significantly increased compared to other groups. Heart weight/body weight ratio was significantly correlated with serum FGF23 levels and mRNA expression of FGF23, ANG, AT1R, ACE. In addition, significant correlations of serum FGF23 levels and cardiac mRNA expression of FGF23 with cardiac mRNA expressions of RAAS-related factors were observed. Conclusion Our results suggest that serum FGF23 levels and cardiac mRNA expression of FGF23 increase with the development of LVH and CKD and the changes is possibly enhanced through the colocalized activation of RAAS.


1994 ◽  
Vol 266 (6) ◽  
pp. H2468-H2475 ◽  
Author(s):  
H. A. Rockman ◽  
S. P. Wachhorst ◽  
L. Mao ◽  
J. Ross

There is increasing evidence that the renin-angiotensin system may play a important role in cardiac hypertrophy. To assess the role of angiotensin II in the induction of cardiac hypertrophy, three groups of adult mice were subjected to left ventricular pressure overload by transverse aortic constriction (TAC). For the next 7 days the groups received either the specific angiotensin II subtype 1 receptor (AT1) antagonist (losartan, 1.05 g/l; n = 17), an angiotensin enzyme inhibitor (captopril, 2 g/l; n = 17), or no treatment (n = 22) administered in the drinking water and compared with three similarly treated sham-operated groups (n = 7 each). TAC resulted in a significant increase in heart weight-to-body weight ratio (0.634 +/- 0.087 vs. 0.525 +/- 0.039, g/g x 100, P < 0.05), which was prevented by losartan (0.506 +/- 0.069, g/g x 100, P < 0.0001) despite similar hemodynamic load (proximal systolic pressure 146 +/- 31 vs. 136 +/- 32 mmHg, untreated vs. losartan, P = NS). Proximal systolic pressure was positively correlated with the development of ventricular hypertrophy. In the presence of AT1-receptor blockade, the increase in heart weight-to-body weight ratio at any given systolic pressure was significantly attenuated compared with untreated TAC mice. The increase in heart weight-to-body weight ratio was also significantly attenuated by captopril compared with untreated banded controls (0.542 +/- 0.091, g/g x 100, P = 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 305 (1) ◽  
pp. H86-H94 ◽  
Author(s):  
Naohiro Yamaguchi ◽  
Asima Chakraborty ◽  
Tai-Qin Huang ◽  
Le Xu ◽  
Angela C. Gomez ◽  
...  

The cardiac ryanodine receptor (RyR2) is inhibited by calmodulin (CaM) and S100A1. Simultaneous substitution of three amino acid residues (W3587A, L3591D, F3603A; RyR2ADA) in the CaM binding domain of RyR2 results in loss of CaM inhibition at submicromolar (diastolic) and micromolar (systolic) Ca2+, cardiac hypertrophy, and heart failure in Ryr2 ADA/ADA mice. To address whether cardiac hypertrophy results from the elimination of CaM and S100A1 inhibition at diastolic or systolic Ca2+, a mutant mouse was generated with a single RyR2 amino acid substitution (L3591D; RyR2D). Here we report that in single-channel measurements RyR2-L3591D isolated from Ryr2 D/D hearts lost CaM inhibition at diastolic Ca2+ only, whereas S100A1 regulation was eliminated at both diastolic and systolic Ca2+. In contrast to the ∼2-wk life span of Ryr2 ADA/ADA mice, Ryr2 D/D mice lived longer than 1 yr. Six-month-old Ryr2 D/D mice showed a 9% increase in heart weight-to-body weight ratio, modest changes in cardiac morphology, and a twofold increase in atrial natriuretic peptide mRNA levels compared with wild type. After 4-wk pressure overload with transverse aortic constriction, heart weight-to-body weight ratio and atrial natriuretic peptide mRNA levels increased and echocardiography showed changes in heart morphology of Ryr2 D/D mice compared with sham-operated mice. Collectively, the findings indicate that the single RyR2-L3591D mutation, which distinguishes the effects of diastolic and systolic Ca2+, alters heart size and cardiac function to a lesser extent in Ryr2 D/D mice than the triple mutation in Ryr2 ADA/ADA mice. They further suggest that CaM inhibition of RyR2 at systolic Ca2+ is important for maintaining normal cardiac function.


Sign in / Sign up

Export Citation Format

Share Document