scholarly journals MO683EXPRESSION OF PARACELLULAR JUNCTION COMPONENTS AND TRANSCELLULAR TRANSPORTERS IN HEALTH, CKD5 AND PERITONEAL DIALYSIS

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Iva Marinovic ◽  
Maria Bartosova ◽  
Eszter Lévai ◽  
David Ridinger ◽  
Betti Schaefer ◽  
...  

Abstract Background and Aims Tight junction (TJ) proteins have been suggested as molecular correlates for peritoneal semi-permeability and dialytic transport function in patients on peritoneal dialysis. Junction abundance in healthy individuals, in those with CKD5 and in patients on PD has not been described yet, the relation with peritoneal solute transport is unknown. Method Junction and transporter expression was analysed in multi-omics data sets from microdissected omental arterioles in children with normal renal function, CKD5 and on PD with low and high glucose degradation product (GDP) content (n=6/group). Parietal peritoneal tight junction proteins CLDN-1,-2,-3,-4,-5,-15, the adapter protein of claudins to actin cytoskeleton protein, zonula occludens-1 (ZO-1), the tricellular junction protein tricellulin (TriC), and transcellular transporters for sodium (ENaC), glucose (SGLT-1) and phosphate (PIT-1) were quantified in 40 non-CKD individuals, 20 children with CKD5 and 20 and 15 children on low- and high-GDP PD by quantitative, digital immunohistochemistry. Findings were correlated to 2-hour peritoneal equilibration test data obtained within 6 months of biopsy sampling (n=23). Primary human umbilical vein endothelial cells (HUVEC) were used to study the effects of single PD compounds on transepithelial electrical resistance (TER) and molecular size-dependent paracellular transport capacity. Co-stained monolayers were visualized by confocal microscopy. Single junction molecule localization and clustering were analysed by super resolution microscopy. Results Transcriptome and proteome pathway enrichment analysis of arteriolar junction and membrane protein demonstrated regulation in CKD5 versus health, and differential regulation by low- and high-GDP PD versus CKD5. In the parietal peritoneum all junctions and cellular transporters were expressed in endothelial and mesothelial cells. Pore forming CLDN-2, -4 and -15 were localized also in submesothelial immune cells. Parietal peritoneal junction abundance was age-dependent and also modified by CKD5 and PD. Mesothelial and endothelial abundance of the selective cation/water channel CLDN-2 increased in patients on low- and high-GDP PD fluids. Adaptor protein ZO-1 was upregulated in low GDP-PD versus CKD5, while sealing proteins CLDN -3 and -5 were downregulated. D/P creatinine, D/P phosphate, D/D0 glucose were similar in CKD5 and PD groups. D/P creatinine correlated with mesothelial CLDN-15, with arteriolar CLDN-2 and TriC and with endothelial ENaC. D/P phosphate correlated with endothelial CLDN-15, D/D0 glucose with mesothelial CLDN-4 and arteriolar CLDN-2. Capillary ZO-1 correlated with 24-h ultrafiltration standardized to body surface area and dialytic glucose exposure. In vitro, TER was decreased by low pH, glucose and 0.5µM methylglyoxal after 5h. Alanyl-glutamine (AlaGln) dose-dependently increased TER, and reduced 10kDa and 70kDa solute at 24mM, increased the abundance of ZO-1 and CLDN5 at cell-cell contacts, and on nanoscale clustering of the pore-forming CLDN2 and CLDN5. Conclusion Abundance of parietal peritoneal sealing and pore forming junctions and transcellular solute transporters varies with cell type and age and is differentially regulated by PD and associated with dialytic transport function. Our preliminary analyses illustrate the role of junctions and cellular transporters for solute transport across the peritoneal mesothelial and endothelial cell barrier. In-depth understanding of specific molecular functions should provide targets for modulation to improve efficacy of PD.

2006 ◽  
Vol 17 (3) ◽  
pp. 1322-1330 ◽  
Author(s):  
Anna Tsapara ◽  
Karl Matter ◽  
Maria S. Balda

The tight junction adaptor protein ZO-1 regulates intracellular signaling and cell proliferation. Its Src homology 3 (SH3) domain is required for the regulation of proliferation and binds to the Y-box transcription factor ZO-1-associated nucleic acid binding protein (ZONAB). Binding of ZO-1 to ZONAB results in cytoplasmic sequestration and hence inhibition of ZONAB's transcriptional activity. Here, we identify a new binding partner of the SH3 domain that modulates ZO-1–ZONAB signaling. Expression screening of a cDNA library with a fusion protein containing the SH3 domain yielded a cDNA coding for Apg-2, a member of the heat-shock protein 110 (Hsp 110) subfamily of Hsp70 heat-shock proteins, which is overexpressed in carcinomas. Regulated depletion of Apg-2 in Madin-Darby canine kidney cells inhibits G1/S phase progression. Apg-2 coimmunoprecipitates with ZO-1 and partially localizes to intercellular junctions. Junctional recruitment and coimmunoprecipitation with ZO-1 are stimulated by heat shock. Apg-2 competes with ZONAB for binding to the SH3 domain in vitro and regulates ZONAB's transcriptional activity in reporter gene assays. Our data hence support a model in which Apg-2 regulates ZONAB function by competing for binding to the SH3 domain of ZO-1 and suggest that Apg-2 functions as a regulator of ZO-1–ZONAB signaling in epithelial cells in response to cellular stress.


1998 ◽  
Vol 141 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Julie Haskins ◽  
Lijie Gu ◽  
Erika S. Wittchen ◽  
Jennifer Hibbard ◽  
Bruce R. Stevenson

A 130-kD protein that coimmunoprecipitates with the tight junction protein ZO-1 was bulk purified from Madin-Darby canine kidney (MDCK) cells and subjected to partial endopeptidase digestion and amino acid sequencing. A resulting 19–amino acid sequence provided the basis for screening canine cDNA libraries. Five overlapping clones contained a single open reading frame of 2,694 bp coding for a protein of 898 amino acids with a predicted molecular mass of 98,414 daltons. Sequence analysis showed that this protein contains three PSD-95/SAP90, discs-large, ZO-1 (PDZ) domains, a src homology (SH3) domain, and a region similar to guanylate kinase, making it homologous to ZO-1, ZO-2, the discs large tumor suppressor gene product of Drosophila, and other members of the MAGUK family of proteins. Like ZO-1 and ZO-2, the novel protein contains a COOH-terminal acidic domain and a basic region between the first and second PDZ domains. Unlike ZO-1 and ZO-2, this protein displays a proline-rich region between PDZ2 and PDZ3 and apparently contains no alternatively spliced domain. MDCK cells stably transfected with an epitope-tagged construct expressed the exogenous polypeptide at an apparent molecular mass of ∼130 kD. Moreover, this protein colocalized with ZO-1 at tight junctions by immunofluorescence and immunoelectron microscopy. In vitro affinity analyses demonstrated that recombinant 130-kD protein directly interacts with ZO-1 and the cytoplasmic domain of occludin, but not with ZO-2. We propose that this protein be named ZO-3.


Reproduction ◽  
2008 ◽  
Vol 135 (6) ◽  
pp. 867-877 ◽  
Author(s):  
Gerard A Tarulli ◽  
Sarah J Meachem ◽  
Stefan Schlatt ◽  
Peter G Stanton

This study aimed to assess the effect of gonadotrophin suppression and FSH replacement on testicular tight junction dynamics and blood–testis barrier (BTB) organisation in vivo, utilising the seasonal breeding Djungarian hamster. Confocal immunohistology was used to assess the cellular organisation of tight junction proteins and real-time PCR to quantify tight junction mRNA. The effect of tight junction protein organisation on the BTB permeability was also investigated using a biotin-linked tracer. Tight junction protein (claudin-3, junctional adhesion molecule (JAM)-A and occludin) localisation was present but disorganised after gonadotrophin suppression, while mRNA levels (claudin-11, claudin-3 and occludin) were significantly (two- to threefold) increased. By contrast, both protein localisation and mRNA levels for the adaptor protein zona occludens-1 decreased after gonadotrophin suppression. FSH replacement induced a rapid reorganisation of tight junction protein localisation. The functionality of the BTB (as inferred by biotin tracer permeation) was found to be strongly associated with the organisation and localisation of claudin-11. Surprisingly, JAM-A was also recognised on spermatogonia, suggesting an additional novel role for this protein in trans-epithelial migration of germ cells across the BTB. It is concluded that gonadotrophin regulation of tight junction proteins forming the BTB occurs primarily at the level of protein organisation and not gene transcription in this species, and that immunolocalisation of the organised tight junction protein claudin-11 correlates with BTB functionality.


1991 ◽  
Vol 11 (4) ◽  
pp. 351-354 ◽  
Author(s):  
Andrzej Breborowicz ◽  
Maciej Radkowski ◽  
Jan Knapowski ◽  
Dimitrios G. Oreopoulos

The effect of chondroitin sulphate (CS) on peritoneal fluid and solute transport was studied in rats undergoing peritoneal dialysis. In the presence of CS, net ultrafiltration increased, while absorption of glucose and horseradish peroxidase from the peritoneal cavity decreased. Albumin, used instead of CS, did not modify either fluid or solute transport. In in vitro experiments on isolated rabbit mesentery, CS decreased transmembrane water flow induced by hydrostatic pressure, and its effect was not fully reversed 60 minutes after “wash-out” of this glycosaminoglycan. We postulate that the polyanionic CS molecules are trapped in the peritoneal interstitium, thus decreasing its hydraulic conductivity and permeability, which in turn increases net fluid removal during peritoneal dialy sis because of its slower absorption from the peritoneal cavity.


2018 ◽  
Vol 66 ◽  
pp. 93-109 ◽  
Author(s):  
Yeojung Kim ◽  
Gail A. West ◽  
Greeshma Ray ◽  
Sean P. Kessler ◽  
Aaron C. Petrey ◽  
...  

Cosmetics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 119
Author(s):  
Jiyoung Choi ◽  
Dongki Yang ◽  
Mi Yeon Moon ◽  
Gi Yeon Han ◽  
Moon Sik Chang ◽  
...  

Witch hazel extracts have been used for decades as cosmetic ingredients in skin care products. Our present study aims to evaluate its potential in anti-pollution products using a previously reported in vitro model. Calcium is a universal second messenger, and we used human respiratory and skin cells to detect changes in intracellular Ca2+ concentrations upon particulate matter contact. Both an increase in pro-inflammatory markers and a decrease in tight junction proteins were confirmed, as previously reported. Witch hazel stem and leaf extract showed significant attenuation of Ca2+ response upon the challenge; it displayed systematic regulations of the signal generator, PAR-2; a pro-inflammatory marker, NF-κB; and a tight junction protein, Occludin. We identified hexagalloylglucose from the extract and concluded that it is a major component regulating protection from particulate matter. Based on these results, witch hazel extract containing hexagalloylglucose is an active ingredient in anti-pollution skin care products.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Amin Boroujerdi ◽  
Jennifer V Welser-Alves ◽  
Richard Milner

Objective: Vascular remodeling involves a highly coordinated break-down and build-up of the vascular basal lamina and inter-endothelial tight junction proteins. The goal of this study was to examine the role of matrix metalloproteinase-9 (MMP-9) in remodeling of cerebral blood vessels, both in hypoxia-induced angiogenesis and in the vascular pruning that accompanies the switch from hypoxia back to normoxia. Approach and Results: In a chronic mild hypoxia model of cerebrovascular remodeling, gel zymography revealed that MMP-9 levels were increased, both in the hypoxic angiogenic response and in the post-hypoxic pruning response. Compared to wild-type mice, MMP-9 KO mice showed no alteration in hypoxic-induced angiogenesis, but did show marked delay in post-hypoxic vascular pruning. In wild-type mice, vascular pruning was associated with fragmentation of vascular laminin and the tight junction protein claudin-5, while this process was markedly attenuated in MMP-9 KO mice. In vitro experiments showed that hypoxia stimulated MMP-9 expression in brain endothelial cells (BECs) but not pericytes. While immunofluorescent and flow cytometry analyses showed that hypoxia led to reduced expression of laminin and claudin-5 in wild-type BECs, this decrease was absent in MMP-9 KO BECs. Conclusions: These results show that while MMP-9 is not essential for hypoxic-induced cerebral angiogenesis, it plays an important role in post-hypoxic vascular pruning by degrading laminin and claudin-5. Our data support the concept that MMP-9 inhibition might provide therapeutic benefit in the treatment of ischemic stroke, by preventing post-hypoxic vascular pruning, thereby optimizing vascular density and integrity.


2009 ◽  
Vol 6 (1) ◽  
pp. 26 ◽  
Author(s):  
Andrea D Lehmann ◽  
Fabian Blank ◽  
Oliver Baum ◽  
Peter Gehr ◽  
Barbara M Rothen-Rutishauser

Sign in / Sign up

Export Citation Format

Share Document