scholarly journals EXTH-37. TARGETING EPIGENETIC VULNERABILITIES IDENTIFIED FROM A CRISPR SCREEN IN H3.3K27M DIPG

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii95-ii95
Author(s):  
Eshini Panditharatna ◽  
Neekesh Dharia ◽  
Deyao Li ◽  
Alexander Beck ◽  
McKenzie Shaw ◽  
...  

Abstract Children diagnosed with diffuse intrinsic pontine glioma (DIPG), a type of high grade glioma in the brainstem, currently have a dismal 5-year overall survival of only 2%. The majority of DIPG patients harbor a K27M mutation in histone 3.3 encoding genes (H3.3K27M). To understand if the aberrant epigenetic landscape induced by H3.3K27M provides an opportunity for novel targeted therapies, we conducted the first CRISPR/Cas9 screen using a focused library of 1,350 epigenetic regulatory and cancer related genes in six H3.3K27M DIPG patient-derived primary neurosphere cell lines. We identified gene dependencies in chromatin regulators, polycomb repressive complexes 1 and 2 (PRC1 and PRC2), histone demethylases, acetyltransferases and deacetylators as novel tumor cell dependencies in DIPG. We hypothesized that targeting dysregulated functions of chromatin regulators by genetically deleting and chemically targeting these epigenetically induced vulnerabilities, we could ameliorate, or even reverse the downstream oncogenic effects of the aberrant epigenetic landscape of DIPG. In our secondary CRISPR nanoscreen, we first used six single guide RNAs (sgRNA) to knockout each gene using CRISPR/Cas9 ribonucleoprotein nucleofections, followed by use of three best sgRNAs combined with homology directed repair templates. Compared to lentiviral delivery, nucleofection is a rapid method, with reduced off-target toxicity, suitable for single gene knockouts in DIPG neurospheres. Secondary CRISPR validations confirmed dependencies in BMI1, CBX4, KDM1A, EZH2, EED, SUZ12, HDAC2, and EP300. Next, we conducted a chemical screen using 20 inhibitors and degraders to target the aberrant activity of HDAC, KDM1A, P300/CBP, PRC1 and PRC2. We identified eight chemical compounds that were effective in H3.3K27M DIPG neurosphere cell lines at low drug concentrations. Among these, an inhibitor and degrader targeting P300/CBP activity indicates a novel strategy of epigenetic therapy in DIPG. Through our combinatorial testing, we will identify a synergistic combination of epigenetic therapy for treating children diagnosed with H3.3K27M DIPG.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 625-625
Author(s):  
Liping Li ◽  
Jung-Hyun Kim ◽  
Wenyan Lu ◽  
Leslie Cope ◽  
Donna M Williams ◽  
...  

Abstract Introduction: Myeloproliferative neoplasms (MPN) are clonal hematopoietic stem cell (HSC) disorders characterized by hyperactive JAK/STAT signaling and increased risk of transformation to myelofibrosis (MF) and acute myeloid leukemia (AML). However, mechanisms driving progression remain elusive and therapies are ineffective after leukemic transformation. The High Mobility Group A1 (HMGA1) gene encodes oncogenic chromatin regulators which are overexpressed in diverse tumors where they portend adverse outcomes (Resar Cancer Res 2010; Xian et al Nature Commun 2017). Hmga1 induces leukemic transformation in transgenic mice and HMGA1 is overexpressed in refractory myeloid malignancies (Resar et al Cancer Res 2018). Further, germline lesions within the HMGA1 loci increase the risk for developing MPN (Bao et al Nature 2020). We therefore sought to: 1) test the hypothesis that HMGA1 drives MPN progression by rewiring transcriptional networks to foster leukemogenesis, and, 2) identify mechanisms underlying HMGA1 that could be targeted with therapy. Methods: To elucidate the function of HMGA1, we disrupted HMGA1 expression via CRISPR/Cas9 or short hairpin RNA (shRNA) targeting 2 different sequences per gene and assessed proliferation, colony formation, apoptosis, and leukemogenesis. We also generated JAK2 V617F transgenic mouse models of MF with Hmga1 deficiency. To dissect molecular mechanisms underlying HMGA1, we integrated RNAseq, ATACseq, and chromatin immunoprecipitation (ChIP) from MPN-AML cell lines (DAMI, SET-2). Next, we tested whether HMGA1 depletion synergizes with ruxolitinib in preventing leukemic engraftment in mice. To identify drugs to target HMGA1 networks, we applied the Broad Institute Connectivity Map (CMAP). Results: HMGA1 is overexpressed in CD34 + cells from patients with JAK2 V617F MPN with highest levels after transformation to MF or AML in 3 independent cohorts. CRISPR/Cas9 inactivation or shRNA-mediated HMGA1 silencing disrupts proliferation, decreases the frequency of cells in S phase, increases apoptosis, and impairs clonogenicity in human MPN-AML cell lines. HMGA1 depletion also prevents leukemic engraftment in mice. Surprisingly, loss of just a single Hmga1 allele prevents progression to MF in JAK2 V617Fmurine models of MPN, decreasing erythrocytosis, thrombocytosis, and preventing splenomegaly and fibrosis of the spleen and bone marrow. Further, Hmga1 deficiency preferentially prevents expansion in long-term HSC, granulocyte-macrophage progenitors, and megakaryocyte-erythroid progenitors in JAK2 V617F mice. RNAseq revealed genes induced by HMGA1 that govern cell cycle progression (E2F targets, mitotic spindle, G2M checkpoint, MYC targets) and cell fate decisions (GATA2 networks), including the GATA2 master regulator gene. Silencing GATA2 recapitulates anti-leukemia phenotypes observed with HMGA1 deficiency whereas restoring GATA2 in MPN-AML cells with HMGA1 silencing partially rescues leukemia phenotypes, increasing clonogenicity and leukemic engraftment. Mechanistically, HMGA1 binds directly to AT-rich sequences near the GATA2 developmental enhancer (+9.5), enhances chromatin accessibility, and recruits active histone marks (H3K4me1/3) to induce GATA2 expression. HMGA1 depletion enhances responses to the JAK/STAT Inhibitor, ruxolitinib, delaying leukemic engraftment and prolonging survival in murine models of JAK2 V617F MPN-AML. Further, epigenetic drugs predicted to target HMGA1 transcriptional networks using CMAP synergize with JAK inhibitors to disrupt proliferation in human MPN-AML cells. HMGA1 and GATA2 are co-expressed and up-regulated with progression from MF to AML in matched patient samples. Moreover, HMGA1 transcriptional networks are activated in leukemic blasts, thus underscoring the role of HMGA1 in human MPN progression. Conclusions: We uncovered a previously unknown epigenetic program whereby HMGA1 enhances chromatin accessibility and recruits activating histone marks to induce transcriptional networks required for progression in MPN, including direct transactivation of GATA2. Further, HMGA1 networks can be targeted with epigenetic therapy and synergize with ruxolitinib. Together, our studies reveal a new paradigm whereby HMGA1 up-regulates GATA2 and proliferation networks to drive disease progression and illuminate HMGA1 as a novel therapeutic target in MPN. Figure 1 Figure 1. Disclosures Rampal: Jazz Pharmaceuticals: Consultancy; Incyte: Consultancy, Research Funding; Kartos: Consultancy; Constellation: Research Funding; Pharmaessentia: Consultancy; Blueprint: Consultancy; Disc Medicine: Consultancy; Stemline: Consultancy, Research Funding; BMS/Celgene: Consultancy; Novartis: Consultancy; Sierra Oncology: Consultancy; CTI: Consultancy; Abbvie: Consultancy; Memorial Sloan Kettering: Current Employment. Stubbs: Incyte Research Institute: Current Employment, Current holder of individual stocks in a privately-held company.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1804
Author(s):  
Quentin Bailleul ◽  
Pauline Navarin ◽  
Mélanie Arcicasa ◽  
Christine Bal-Mahieu ◽  
Angel Montero Carcaboso ◽  
...  

Hypoxia is a hallmark of many solid tumors and is associated with resistance to anticancer treatments. Hypoxia-activated prodrugs (HAPs) were developed to target the hypoxic regions of these tumors. Among 2nd generation HAPs, Evofosfamide (Evo, also known as TH-302) exhibits preclinical and clinical activities against adult glioblastoma. In this study, we evaluated its potential in the field of pediatric neuro-oncology. We assessed the efficacy of Evo in vitro as a single drug, or in combination with SN38, doxorubicin, and etoposide, against three pediatric high-grade glioma (pHGG) and three diffuse intrinsic pontine glioma (DIPG) cell lines under hypoxic conditions. We also investigated radio-sensitizing effects using clonogenic assays. Evo inhibited the growth of all cell lines, mainly under hypoxia. We also highlighted a significant synergism between Evo and doxorubicin, SN38, or etoposide. Finally, Evo radio-sensitized the pHGG cell line tested, both with fractionated and single-dose irradiation schedules. Altogether, we report here the first preclinical proof of evidence about Evofosfamide efficiency against hypoxic pHGG and DIPG cells. Since such tumors are highly hypoxic, and Evo potentiates the effect of ionizing radiation and chemotherapy, it appears as a promising therapeutic strategy for children with brain tumors.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii290-iii291
Author(s):  
Karen Tsui ◽  
Andrew Law ◽  
Michael K Watson

Abstract Diffuse midline glioma (DMG) with H3.3K27M mutation is associated with an extremely poor prognosis, with a median survival of 10 to 12 months. Radiation remains the standard of care however there is no established curative therapy available. We describe a patient diagnosed with a diffuse intrinsic pontine glioma at 5 years of age by clinical and radiological criteria. He was treated with focal radiation 59Gy which resulted in reduction in size of the tumour, and partial improvement of T2 changes on MRI. At 18 months post diagnosis, the patient developed metastatic recurrence at the anterior fornix. This was biopsied and histopathology demonstrated a high grade glioma. Next generation sequencing revealed a H3F3A K27M mutation, and an ATM R3008H mutation. He received whole ventricular radiation 36Gy and boost to the lesion to 45Gy, followed by Olaparib 135mg/m2/day twice daily. He remains in radiological remission 20 months post metastatic relapse and has no organ toxicity to Olaparib. CONCLUSION: H3.3K27M and ATM co-segregating mutations are described in DMG. This is the first case report of targeting ATM mutation with a PARP inhibitor which resulted in prolonged remission of metastatic DMG. Olaparib was well tolerated.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicola A. Thompson ◽  
Marco Ranzani ◽  
Louise van der Weyden ◽  
Vivek Iyer ◽  
Victoria Offord ◽  
...  

AbstractGenetic redundancy has evolved as a way for human cells to survive the loss of genes that are single copy and essential in other organisms, but also allows tumours to survive despite having highly rearranged genomes. In this study we CRISPR screen 1191 gene pairs, including paralogues and known and predicted synthetic lethal interactions to identify 105 gene combinations whose co-disruption results in a loss of cellular fitness. 27 pairs influence fitness across multiple cell lines including the paralogues FAM50A/FAM50B, two genes of unknown function. Silencing of FAM50B occurs across a range of tumour types and in this context disruption of FAM50A reduces cellular fitness whilst promoting micronucleus formation and extensive perturbation of transcriptional programmes. Our studies reveal the fitness effects of FAM50A/FAM50B in cancer cells.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i6-i7
Author(s):  
Alişan Kayabölen ◽  
Gizem Nur Sahin ◽  
Fidan Seker ◽  
Ahmet Cingöz ◽  
Bekir Isik ◽  
...  

Abstract Mutations in IDH1 and IDH2 genes are common in low grade gliomas and secondary GBM and are known to cause a distinct epigenetic landscape in these tumors. To interrogate the epigenetic vulnerabilities of IDH-mutant gliomas, we performed a chemical screen with inhibitors of chromatin modifiers and identified 5-azacytidine, Chaetocin, GSK-J4 and Belinostat as potent agents against primary IDH1-mutant cell lines. Testing the combinatorial efficacy of these agents, we demonstrated GSK-J4 and Belinostat combination as a very effective treatment for the IDH1-mutant glioma cells. Engineering established cell lines to ectopically express IDH1R132H, we showed that IDH1R132H cells adopted a different transcriptome with changes in stress-related pathways that were reversible with the mutant IDH1 inhibitor, GSK864. The combination of GSK-J4 and Belinostat was highly effective on IDH1R132H cells, but not on wt glioma cells or nonmalignant fibroblasts and astrocytes. The cell death induced by GSK-J4 and Belinostat combination involved the induction of cell cycle arrest and apoptosis. RNA sequencing analyses revealed activation of inflammatory and unfolded protein response pathways in IDH1-mutant cells upon treatment with GSK-J4 and Belinostat conferring increased stress to glioma cells. Specifically, GSK-J4 induced ATF4-mediated integrated stress response and Belinostat induced cell cycle arrest in primary IDH1-mutant glioma cells; which were accompanied by DDIT3/CHOP-dependent upregulation of apoptosis. Moreover, to dissect out the responsible target histone demethylase, we undertook genetic approach and demonstrated that CRISPR/Cas9 mediated ablation of both KDM6A and KDM6B genes phenocopied the effects of GSK-J4 in IDH1-mutant cells. Finally, GSK-J4 and Belinostat combination significantly decreased tumor growth and increased survival in an orthotopic model in mice. Together, these results suggest a potential combination epigenetic therapy against IDH1-mutant gliomas.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 561
Author(s):  
Chibueze D. Nwagwu ◽  
Amanda V. Immidisetti ◽  
Michael Y. Jiang ◽  
Oluwasegun Adeagbo ◽  
David C. Adamson ◽  
...  

Development of effective treatments for high-grade glioma (HGG) is hampered by (1) the blood–brain barrier (BBB), (2) an infiltrative growth pattern, (3) rapid development of therapeutic resistance, and, in many cases, (4) dose-limiting toxicity due to systemic exposure. Convection-enhanced delivery (CED) has the potential to significantly limit systemic toxicity and increase therapeutic index by directly delivering homogenous drug concentrations to the site of disease. In this review, we present clinical experiences and preclinical developments of CED in the setting of high-grade gliomas.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi64-vi64
Author(s):  
Nader Sanai ◽  
An-Chi Tien ◽  
Jun Jiang ◽  
Yu-Wei Chang ◽  
Chelsea Pennington-Krygier ◽  
...  

Abstract BACKGROUND mTOR activation is a mechanism of resistance in CDK4/6 targeting. We evaluated tumor pharmacokinetics (PK) and tumor pharmacodynamics (PD) of combined CDK4/6 and mTOR inhibition in recurrent high-grade glioma (HGG) patients. METHODS Recurrent HGG patients with (1) intact RB, (2) CDKN2A/B deletion or CDK4/6 amplification, and (3) PTEN loss or PIK3CA mutations receive five days of presurgical ribociclib plus everolimus prior to resection at 2, 8 or 24 hours after the final dose. Beginning at 400mg QD ribociclib plus 2.5mg QD everolimus, six dose-escalations summit at 600mg QD plus 60mg QW. Gadolinium [Gd]-enhancing and nonenhancing tumor regions, CSF, and plasma are collected. Total and unbound drug concentrations are determined using validated LC-MS/MS methods. RB and S6 phosphorylation are compared to matched archival tissue. To select patients for a therapeutic expansion phase of combined drug therapy, the protocol includes a PK ‘trigger’ (i.e., for each drug, unbound concentration in Gd-nonenhancing tumor > 5-fold biochemical IC50) and a PD ‘trigger’ (i.e., for each tumor, > 30% decrease in pRB and pS6). RESULTS 21 patients with WHO Grade III (n=2) and IV (n=19) gliomas were enrolled into the Phase 0 component of the study. No dose-limiting toxicities were observed. In Gd-nonenhancing tumor regions, the median unbound concentration of ribociclib was 719 nM, whereas unbound everolimus tumor concentrations were undetectable. Across all dose-levels, 62% (13/21) and 22% (5/21) of tumors demonstrated decreased tumor RB and S6 phosphorylation, respectively. Tumor proliferation (MIB-1) was decreased in 67% (14/21) of all patients. No patients qualified for the therapeutic expansion phase. CONCLUSION In adult HGG, ribociclib achieves pharmacologically-relevant concentrations in Gd-nonenhancing tumor whereas everolimus exhibits no meaningful tumor penetration. These findings support further clinical development of ribociclib, but not everolimus, for the treatment of high-grade glioma patients.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0253250
Author(s):  
Daniel Rud ◽  
Paul Marjoram ◽  
Kimberly Siegmund ◽  
Darryl Shibata

Recent DepMap CRISPR-Cas9 single gene disruptions have identified genes more essential to proliferation in tissue culture. It would be valuable to translate these finding with measurements more practical for human tissues. Here we show that DepMap essential genes and other literature curated functional genes exhibit cell-specific preferential epigenetic conservation when DNA methylation measurements are compared between replicate cell lines and between intestinal crypts from the same individual. Culture experiments indicate that epigenetic drift accumulates through time with smaller differences in more functional genes. In NCI-60 cell lines, greater targeted gene conservation correlated with greater drug sensitivity. These studies indicate that two measurements separated in time allow normal or neoplastic cells to signal through conservation which human genes are more essential to their survival in vitro or in vivo.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii44-ii44
Author(s):  
Yoshihiro Tsukamoto ◽  
Manabu Natsumeda ◽  
Masayasu Okada ◽  
Takeyoshi Eda ◽  
Junichi Yoshimura ◽  
...  

Abstract INTRODUCTION Bevacizumab (BEV) therapy has been used for pediatric high grade glioma,however the evidence and effectiveness are not understood yet. METHODS We report 7 cases (age 2 to 10 years old) of pediatric high grade glioma treated with BEV. One case is thalamic diffuse midline glioma H3K27 mutant (DMGH3K27M),one case is brain stem DMGH3K27M,one case is cerebellar high grade glioma,and 4 cases are diffuse intrinsic pontine glioma (DIPG) diagnosed clinically without biopsy. 5 cases were treated with BEV when diagnosed as recurrence after chemo-radiotherapy. One case was treated for rapid tumor progression during radiotherapy. One case was started on BEV therapy with radiation and concomitant temozolomide therapy. RESULT The number of times of BEV was 2 to 13 times (median 7 times). The period of BEV was 1 to 9 months (median 4 months). One case which was treated with BEV at rapid progression during radiation showed good response on imaging and improvement of symptoms. 4 of 5 cases who were treated at recurrence clinically showed mild symptomatic improvement. One case treated with BEV and radiotherapy initially was not evaluated. The adverse effects of BEV included wound complication of tracheostomy and rash. CONCLUSION BEV showed good response for rapid progression during radiotherapy,and mild response for recurrence cases. BEV is thought to be an effective therapeutic agent for pediatric HGG at recurrence and rapid tumor progression during radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document