RADT-17. FOCUSED ULTRASOUND MEDIATED BLOOD–BRAIN BARRIER OPENING IS SAFE AND FEASIBLE CONCURRENT WITH AND ADJUVANT TO A CLINICAL RADIATION SCHEME FOR BRAINSTEM DMG

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi44-vi45
Author(s):  
Masih Tazhibi ◽  
Nicholas McQuillan ◽  
Hong-Jian Wei ◽  
Antonios Pouliopoulos ◽  
Ethan Bendau ◽  
...  

Abstract Diffuse midline gliomas (DMG) are pediatric tumors with dismal prognosis. When these tumors emerge in the brainstem, there exists no feasible method of surgical resection or systemic intervention, making ionizing radiation the sole therapeutic avenue to date. However, radiotherapy (RT) provides only marginal survival benefit as the topographically diffuse and highly infiltrative tumors spread in areas in which the blood-brain barrier (BBB) is relatively intact. Focused ultrasound (FUS) with intravenous microbubbles provides a compelling solution, transiently and non-invasively opening the BBB to allow drug delivery across the cerebrovasculature. Nonetheless, it remains unclear whether FUS can be safely administered at the brainstem in patients receiving RT. Therefore, the goal of this study was to assess the safety and feasibility of FUS administered concurrent with and adjuvant to a clinical hypofractionated radiation scheme for brainstem DMG. Non-tumor bearing B6 albino mice were randomly assorted into control, RT, FUS, and RT+FUS groups. Mice designated RT+FUS received 39Gy/13fx (hypofractionated RT scheme) to the brainstem with two sessions of FUS approximately 1 week apart. A single-element, spherical-segment FUS transducer driven by a function generator through a power amplifier was used with concomitant microbubble injection to sonicate the brainstem. Magnetic resonance imaging (MRI) was used to confirm BBB opening and cardiopulmonary measures were recorded throughout sonication. Vitals were assessed daily, and all treatment animals underwent Kondziela inverted screen testing and sequential weight lifting to assess brainstem-related strength and motor coordination deficits. In both FUS and RT+FUS mice, MRI confirmed brainstem BBB opening and subsequent closure within 96 hours. Mouse weights were stable, with slight drops (mean=5.5%) following FUS that resolved within three days. No attenuation in cardiorespiratory, strength, and motor coordination measurements was observed from FUS. FUS is a safe and feasible technique for brainstem BBB opening concurrent with and adjuvant to clinical hypofractionated RT.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zachary K. Englander ◽  
Hong-Jian Wei ◽  
Antonios N. Pouliopoulos ◽  
Ethan Bendau ◽  
Pavan Upadhyayula ◽  
...  

AbstractDrug delivery in diffuse intrinsic pontine glioma is significantly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), when combined with the administration of microbubbles can effectively open the BBB permitting the entry of drugs across the cerebrovasculature into the brainstem. Given that the utility of FUS in brainstem malignancies remains unknown, the purpose of our study was to determine the safety and feasibility of this technique in a murine pontine glioma model. A syngeneic orthotopic model was developed by stereotactic injection of PDGF-B+PTEN−/−p53−/− murine glioma cells into the pons of B6 mice. A single-element, spherical-segment 1.5 MHz ultrasound transducer driven by a function generator through a power amplifier was used with concurrent intravenous microbubble injection for tumor sonication. Mice were randomly assigned to control, FUS and double-FUS groups. Pulse and respiratory rates were continuously monitored during treatment. BBB opening was confirmed with gadolinium-enhanced MRI and Evans blue. Kondziela inverted screen testing and sequential weight lifting measured motor function before and after sonication. A subset of animals were treated with etoposide following ultrasound. Mice were either sacrificed for tissue analysis or serially monitored for survival with daily weights. FUS successfully caused BBB opening while preserving normal cardiorespiratory and motor function. Furthermore, the degree of intra-tumoral hemorrhage and inflammation on H&E in control and treated mice was similar. There was also no difference in weight loss and survival between the groups (p > 0.05). Lastly, FUS increased intra-tumoral etoposide concentration by more than fivefold. FUS is a safe and feasible technique for repeated BBB opening and etoposide delivery in a preclinical pontine glioma model.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii286-iii286
Author(s):  
Zachary Englander ◽  
Hong-Jian Wei ◽  
Antonios Pouliopoulos ◽  
Pavan Upadhyayula ◽  
Chia-Ing Jan ◽  
...  

Abstract BACKGROUND Drug delivery remains a major obstacle in DIPG, as the blood brain barrier (BBB) limits the penetration of systemic therapies to the brainstem. Focused ultrasound (FUS) is an exciting new technology that, when combined with microbubbles, can open the BBB permitting the entry of drugs across the cerebrovasculature. Given that the utility of FUS in brainstem tumors remains unknown, the purpose of our study was to determine the safety and feasibility of this technique in a murine pontine glioma model. METHODS A syngeneic orthotopic model was established by stereotactic injection of PDGF-B+PTEN-/-p53-/- murine glioma cells (10,000/1ul) into the pons of B6 albino mice. A single-element, spherical-segment FUS transducer (center frequency=1.5MHz) driven by a function generator through a power amplifier (acoustic pressure=0.7MPa) was used with concurrent intravenous microbubble injection (FUS+MB) to sonicate the tumor on post-injection day 14. BBB opening was confirmed with gadolinium-enhanced MRI and Evans blue. Kondziela inverted screen (KIS) testing was completed to measure motor function. Mice were either immediately sacrificed for histopathological assessment or serially monitored for survival. RESULTS In mice treated with FUS (n=11), there was no measured deficit in KIS testing. Additionally, the degree of intra-tumoral hemorrhage and inflammation on H&E in control (n=5) and treated mice (n=5) was similar. Lastly, there was no difference in survival between the groups (control, n=6, median=26 days; FUS, n=6, median=25 days, p>0.05). CONCLUSION FUS+MB is a safe and feasible technique to open the BBB in a preclinical pontine glioma model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonios N. Pouliopoulos ◽  
Nancy Kwon ◽  
Greg Jensen ◽  
Anna Meaney ◽  
Yusuke Niimi ◽  
...  

AbstractAn emerging approach with potential in improving the treatment of neurodegenerative diseases and brain tumors is the use of focused ultrasound (FUS) to bypass the blood–brain barrier (BBB) in a non-invasive and localized manner. A large body of pre-clinical work has paved the way for the gradual clinical implementation of FUS-induced BBB opening. Even though the safety profile of FUS treatments in rodents has been extensively studied, the histological and behavioral effects of clinically relevant BBB opening in large animals are relatively understudied. Here, we examine the histological and behavioral safety profile following localized BBB opening in non-human primates (NHPs), using a neuronavigation-guided clinical system prototype. We show that FUS treatment triggers a short-lived immune response within the targeted region without exacerbating the touch accuracy or reaction time in visual-motor cognitive tasks. Our experiments were designed using a multiple-case-study approach, in order to maximize the acquired data and support translation of the FUS system into human studies. Four NHPs underwent a single session of FUS-mediated BBB opening in the prefrontal cortex. Two NHPs were treated bilaterally at different pressures, sacrificed on day 2 and 18 post-FUS, respectively, and their brains were histologically processed. In separate experiments, two NHPs that were earlier trained in a behavioral task were exposed to FUS unilaterally, and their performance was tracked for at least 3 weeks after BBB opening. An increased microglia density around blood vessels was detected on day 2, but was resolved by day 18. We also detected signs of enhanced immature neuron presence within areas that underwent BBB opening, compared to regions with an intact BBB, confirming previous rodent studies. Logistic regression analysis showed that the NHP cognitive performance did not deteriorate following BBB opening. These preliminary results demonstrate that neuronavigation-guided FUS with a single-element transducer is a non-invasive method capable of reversibly opening the BBB, without substantial histological or behavioral impact in an animal model closely resembling humans. Future work should confirm the observations of this multiple-case-study work across animals, species and tasks.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
So Hee Park ◽  
Kyoungwon Baik ◽  
Seun Jeon ◽  
Won Seok Chang ◽  
Byoung Seok Ye ◽  
...  

Abstract Background Focused ultrasound (FUS)-mediated blood–brain barrier (BBB) opening has shown efficacy in removal of amyloid plaque and improvement of cognitive functions in preclinical studies, but this is rarely reported in clinical studies. This study was conducted to evaluate the safety, feasibility and potential benefits of repeated extensive BBB opening. Methods In this open-label, prospective study, six patients with Alzheimer’s disease (AD) were enrolled at Severance Hospital in Korea between August 2020 and September 2020. Five of them completed the study. FUS-mediated BBB opening, targeting the bilateral frontal lobe regions over 20 cm3, was performed twice at three-month intervals. Magnetic resonance imaging, 18F-Florbetaben (FBB) positron emission tomography, Caregiver-Administered Neuropsychiatric Inventory (CGA-NPI) and comprehensive neuropsychological tests were performed before and after the procedures. Results FUS targeted a mean volume of 21.1 ± 2.7 cm3 and BBB opening was confirmed at 95.7% ± 9.4% of the targeted volume. The frontal-to-other cortical region FBB standardized uptake value ratio at 3 months after the procedure showed a slight decrease, which was statistically significant, compared to the pre-procedure value (− 1.6%, 0.986 vs1.002, P = 0.043). The CGA-NPI score at 2 weeks after the second procedure significantly decreased compared to baseline (2.2 ± 3.0 vs 8.6 ± 6.0, P = 0.042), but recovered after 3 months (5.2 ± 5.8 vs 8.6 ± 6.0, P = 0.89). No adverse effects were observed. Conclusions The repeated and extensive BBB opening in the frontal lobe is safe and feasible for patients with AD. In addition, the BBB opening is potentially beneficial for amyloid removal in AD patients.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii12-ii12
Author(s):  
Michiharu Yoshida ◽  
Kazuo Maruyama ◽  
Yasutaka Kato ◽  
Rachmilevitch Itay ◽  
Syuji Suzuki ◽  
...  

Abstract OBJECTIVE In neuro-oncology, it is believed that one major obstacle to effective chemotherapy is the high vascularity and heterogenous permeability of brain tumors. Focused ultrasound (FUS) exposure with the microbubbles has been shown to transiently open the blood-brain barrier (BBB) without depositing thermal energy, and thus may enhance the delivery of various therapeutic drugs into brain tumors. The aim of this study was to evaluate the BBB opening using 220-kHz transcranial MRI-guided FUS (TcMRgFUS) device and microbubbles in mouse and rat. METHODS The experiments were performed with the 220-kHz ExAblate Neuro TcMRgFUS system (InSightec) and novel lipid bubbles (LB, Teikyo Univ.). Normal mouse and rat brains were irradiated with TcMRgFUS (output power, 5W; duration of irradiation, 30 s; duty cycle 100%) following intravenous injection of 6x107 LB per mouse and rat, respectively. On irradiation, target temperature rise & cavitation signal were monitored by MR thermometry and cavitation receiver, respectively. Immediately after irradiation, BBB opening and complications were detected based on T1, T2, T2*, and Gadolinium (Gd) enhanced T1-weighted images. RESULTS The maximum temperature of brain tissue was under 42 C. There were no risky-cavitation signals causing hemorrhage. The FUS-LB exposure induced successful BBB opening effect in both mouse and rat, confirmed by Gd enhancement in the target region, lateral ventricles, and sulcus. In addition, there were no complications such as edema, coagulation, and hemorrhage. CONCLUSIONS Although there remain many conditions to be optimized, BBB opening using a 220-kHz TcMRgFUS device and LB can offer a non-invasive and feasible drug delivery for brain malignancies.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Agessandro Abrahao ◽  
Ying Meng ◽  
Maheleth Llinas ◽  
Yuexi Huang ◽  
Clement Hamani ◽  
...  

Abstract MR-guided focused ultrasound (MRgFUS) is an emerging technology that can accurately and transiently permeabilize the blood-brain barrier (BBB) for targeted drug delivery to the central nervous system. We conducted a single-arm, first-in-human trial to investigate the safety and feasibility of MRgFUS-induced BBB opening in eloquent primary motor cortex in four volunteers with amyotrophic lateral sclerosis (ALS). Here, we show successful BBB opening using MRgFUS as demonstrated by gadolinium leakage at the target site immediately after sonication in all subjects, which normalized 24 hours later. The procedure was well-tolerated with no serious clinical, radiologic or electroencephalographic adverse events. This study demonstrates that non-invasive BBB permeabilization over the motor cortex using MRgFUS is safe, feasible, and reversible in ALS subjects. In future, MRgFUS can be coupled with promising therapeutics providing a targeted delivery platform in ALS.


2013 ◽  
Vol 119 (4) ◽  
pp. 887-898 ◽  
Author(s):  
Kevin Beccaria ◽  
Michael Canney ◽  
Lauriane Goldwirt ◽  
Christine Fernandez ◽  
Clovis Adam ◽  
...  

Object The blood-brain barrier (BBB) is a major impediment to the intracerebral diffusion of drugs used in the treatment of gliomas. Previous studies have demonstrated that pulsed focused ultrasound (US) in conjunction with a microbubble contrast agent can be used to open the BBB. To apply the US-induced opening of the BBB in clinical practice, the authors designed an innovative unfocused US device that can be implanted in the skull and used to transiently and repeatedly open the BBB during a standard chemotherapy protocol. The goal of this preliminary work was to study the opening of the BBB induced by the authors' small unfocused US transducer and to evaluate the effects of the sonications on brain parenchyma. Methods Craniectomy was performed in 16 healthy New Zealand White rabbits; epidural application of a single-element planar ultrasonic transducer operating at 1 MHz was then used with a pulse-repetition frequency of 1 Hz, pulse lengths of 10–35 msec, in situ acoustic pressure levels of 0.3–0.8 MPa, and sonication for 60–120 seconds. SonoVue was intravenously injected during the US applications, and opening of the BBB was determined by detecting extravasation of Evans blue dye (EBD) in brain tissues, quantitative measurement of EBD with UV-visible spectrophotometry, and contrast enhancement after Gd injection in 4.7-T MRI. A histological study was performed to determine adverse effects. Results An opening of the BBB was observed over a large extent of the US beam in the brain corresponding to in situ pressures of greater than 0.2 MPa. The BBB opening observed was highly significant for both EBD (p < 0.01) and MRI Gd enhancement (p < 0.0001). The BBB opening was associated with minor adverse effects that included perivascular red blood cell extravasations that were less than 150 μm in size and not visible on MR images. Moderate edema was visible on FLAIR sequences and limited to the extent of the sonication field. Conclusions The results demonstrate that the BBB can be opened in large areas of the brain in rabbits with lowpower, pulsed, and unfocused US with limited damage to healthy tissue.


2014 ◽  
Vol 34 (7) ◽  
pp. 1197-1204 ◽  
Author(s):  
Hong Chen ◽  
Elisa E Konofagou

Focused ultrasound (FUS) in combination with microbubbles (MBs) has been successfully used in the delivery of various-size therapeutic agents across the blood–brain barrier (BBB). This study revealed that FUS-induced BBB opening size, defined by the size of the largest molecule that can permeate through the BBB, can be controlled by the acoustic pressure as dictated by cavitational mechanisms. Focused ultrasound was applied onto the mouse hippocampus in the presence of systemically administered MBs for trans-BBB delivery of fluorescently labeled dextrans with molecular weights 3 to 2,000 kDa (hydrodynamic diameter: 2.3 to 54.4 nm). The dextran delivery outcomes were evaluated using ex vivo fluorescence imaging. Cavitation detection was employed to monitor the MB cavitation activity associated with the delivery of these agents. It was found that the BBB opening size was smaller than 3 kDa (2.3 nm) at 0.31 MPa, up to 70 kDa (10.2 nm) at 0.51 MPa, and up to 2,000 kDa (54.4 nm) at 0.84 MPa. Relatively smaller opening size (up to 70 kDa) was achieved with stable cavitation only; however, inertial cavitation was associated with relatively larger BBB opening size (above 500 kDa). These findings indicate that the BBB opening size can be controlled by the acoustic pressure and predicted using cavitation detection.


2021 ◽  
Author(s):  
Ratneswary Sutharsan ◽  
Liyu Chen ◽  
Jonathan LF Lee ◽  
Esteban Cruz ◽  
Tishila Palliyaguru ◽  
...  

Rationale: The blood-brain barrier (BBB) while functioning as a gatekeeper of the brain, impedes cerebral drug delivery. An emerging technology to overcome this limitation is focused ultrasound (FUS). When FUS interacts with intravenously injected microbubbles (FUS+MB), the BBB opens, transiently allowing the access of therapeutic agents into the brain. However, the ultrasound parameters need to be tightly tuned: when the acoustic pressure is too low there is no opening, and when it is too high, bleeds can occur. We therefore asked whether BBB permeability can be increased by combining FUS+MB with a second modality such that in a clinical setting lower acoustic pressures could be potentially used. Methods: Given that FUS achieves BBB opening by the disruption of tight junction (TJ) proteins such as claudin-5 of brain endothelial cells, we generated a stable MDCK II cell line (eGFP-hCldn5-MDCK II) that expresses fluorescently tagged human claudin-5. Two claudin-5 binders, mC5C2 (a peptide) and cCPEm (a truncated form of an enterotoxin), that have been reported previously to weaken the barrier, were synthesized and assessed for their abilities to enhance the permeability of cellular monolayers. We then performed a comparative analysis of single and combination treatments. Results: We successfully generated a novel cell line that formed functional monolayers as validated by an increased transendothelial electrical resistance (TEER) reading and a low (< 0.2%) permeability to sodium fluorescein (376 Da). We found that the binders exerted a time- and concentration-dependent effect on BBB opening when incubated over an extended period, whereas FUS+MB caused a rapid barrier opening followed by recovery after 12 hours within the tested pressure range. Importantly, preincubation with cCPEm prior to FUS+MB treatment resulted in greater barrier opening compared to either FUS+MB or cCPEm alone as measured by reduced TEER values and an increased permeability to fluorescently labelled 40 kDa dextran (FD40). Conclusion: The data suggest that pre-incubation with clinically suitable binders to TJ proteins may be a general strategy to facilitate safer and more effective ultrasound-mediated BBB opening in cellular and animal systems and potentially also for the treatment of human diseases of the brain.


Sign in / Sign up

Export Citation Format

Share Document