IMMU-52. EFFECTS OF IMMUNE CHECKPOINT BLOCKADE ON ANTIGEN-SPECIFIC CD8+ T CELLS FOR USE IN ADOPTIVE CELLULAR THERAPY

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi104-vi104
Author(s):  
Elizabeth Ogando-Rivas ◽  
Paul Castillo ◽  
Noah Jones ◽  
Vrunda Trivedi ◽  
Jeffrey Drake ◽  
...  

Abstract BACKGROUND Adoptive T-cell therapies have been successfully used as treatment for patients diagnosed with advanced cancers. Unfortunately, for some refractory cancers, they have failed. To overcome this, checkpoint inhibitors have shown to rescue immune anti-tumor responses. We hypothesized that in-vitro checkpoint blockade during T-cell stimulation and expansion with RNA-pulsed dendritic cells may enhance the activity of antigen-specific T-cells and improve the efficacy of ACT platforms. METHODS Human PBMCs were isolated from CMV seropositive donors to generate DCs and pulsed them with CMVpp65-mRNA to educate T-cells in co-culture for 15-days. We targeted pp65 antigen which is ubiquitously expressed by glioblastoma cells. Three checkpoint blockade conditions were evaluated (anti-PD1, anti-Tim3 and anti-PD1+Tim3). IL2 was added every 3 days as well as the blockade antibodies. Immunephenotyping was performed on Day-0 and Day-15. Polyfunctional antigen specific responses were evaluated upon rechallenge with CMVpp65 peptides. RESULTS CMVpp65 activated CD8+ T-cells upregulate Lag3 and Tim3 (p= < 0.0001). Tim3 blockade alone or in combination led to a significant upregulation of Lag3 expression on CD8+pp65Tetramer+ central memory, effector memory, and TEMRA T-cells. This latter T-cell subset uniquely maintain double-positive Tim3/Lag3 expression after blockade. In contrast, PD-1 blockade had minimal effects on Tim3 or Lag3 expression. In addition, IFN-g secretion was reduced in T-cells treated with Tim3 blockade in a dose-dependent manner (p= 0.004). CONCLUSION In this study, we have identified a potential activating component of Tim3 and linkage between Tim3 and Lag3 signaling upon blocking Tim3 axis during T-cell antigen presenting cell interactions that should be considered when targeting immune checkpoints for clinical use.

Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3463-3471 ◽  
Author(s):  
Christoph Hess ◽  
Terry K. Means ◽  
Patrick Autissier ◽  
Tonia Woodberry ◽  
Marcus Altfeld ◽  
...  

CD8 T cells play a key role in host defense against intracellular pathogens. Efficient migration of these cells into sites of infection is therefore intimately linked to their effector function. The molecular mechanisms that control CD8 T-cell trafficking into sites of infection and inflammation are not well understood, but the chemokine/chemokine receptor system is thought to orchestrate this process. Here we systematically examined the chemokine receptor profile expressed on human CD8 T cells. Surprisingly, we found that CXC chemokine receptor 1 (CXCR1), the predominant neutrophil chemokine receptor, defined a novel interleukin-8/CXC ligand 8 (IL-8/CXCL8)–responsive CD8 T-cell subset that was enriched in perforin, granzyme B, and interferon-γ (IFNγ), and had high cytotoxic potential. CXCR1 expression was down-regulated by antigen stimulation both in vitro and in vivo, suggesting antigen-dependent shaping of the migratory characteristics of CD8 T cells. On virus-specific CD8 T cells from persons with a history of Epstein-Barr virus (EBV) and influenza infection, CXCR1 expression was restricted to terminally differentiated effector memory cells. In HIV-1 infection, CXCR1-expressing HIV-1–specific CD8 T cells were present only in persons who were able to control HIV-1 replication during structured treatment interruptions. Thus, CXCR1 identifies a subset of CD8 T cells poised for immediate cytotoxicity and early recruitment into sites of innate immune system activation.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A305-A305
Author(s):  
Kathryn Appleton ◽  
Katy Lassahn ◽  
Ashley Elrod ◽  
Tessa DesRochers

BackgroundCancerous cells can utilize immune checkpoints to escape T-cell-mediated cytotoxicity. Agents that target PD-1, PD-L1 and CTLA4 are collectively deemed immune checkpoint inhibitors (ICIs), and many have been approved for treatment of non-small cell lung cancer (NSCLC) and melanoma. Unfortunately, many patients do not respond to these therapies and often experience disease progression. Immunohistochemistry assays to predict response to ICIs have been inconsistent in their readouts and often patients with low expression levels respond to ICIs. Understanding the determinants of ICI response in individual patients is critical for improving the clinical success of this drug class. Using patient-derived spheroids from NSCLC and melanoma primary tissue, we developed a multi-plexed assay for detecting ICI efficacy.MethodsNine NSCLC and 11 melanoma primary tumor samples were dissociated to single cells, classified for immune checkpoint expression and cell content by flow cytometry, and seeded for spheroid formation. Spheroids were treated with pembrolizumab, nivolumab, atezolizumab, ipilimumab or durvalumab across a range of concentrations and monitored for cytotoxicity at 24-hours and viability at 72-hours by multiplexing CellTox™ Green Cytotoxicity Assay and CellTiter-Glo® 3D Cell Viability Assay. IFNγ and granzyme B secretion was assessed using Luminex technology. ICI response was evaluated by determining the concentration-response relationship for all three read-outs.ResultsIncreased IFNγ and granzyme B were detected for every ICI in one or more patient samples. ICI-induced IFNγ secretion inversely correlated with PD-1+ immune cells. Durvalumab was significantly more cytotoxic for both NSCLC and melanoma spheroids compared to the other ICIs and significantly reduced spheroid viability with mean spheroid survival decreasing to 19.5% for NSCLC and 58.2% for melanoma. We evaluated if there was an association between durvalumab response and cell composition and found that percent spheroid survival significantly correlated with CD8+ T-cells for both NSCLC (r=-0.7920, p=0.0191) and melanoma (r=-0.6918, p=0.0390). Furthermore, CD8+ T-cells correlated with durvalumab-induced granzyme B secretion for NSCLC (r=-0.7645, p=0.0271) and melanoma (r=-0.7419, p=0.0221).ConclusionsIn this study we show ICI-specific increases in immune-related analytes in a concentration-dependent manner for NSCLC and melanoma patient-derived spheroids. We detected spheroid cytotoxicity following short term ICI treatment which closely mirrored decreased spheroid viability at a later timepoint. Finally, we can decipher response mechanisms as exemplified by durvalumab-induced granzyme B secretion correlating with the presence of CD8+ T-cells which results in reduced spheroid viability for both tested cancer indications.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3230-3239 ◽  
Author(s):  
Suparna Dutt ◽  
Jeanette Baker ◽  
Holbrook E. Kohrt ◽  
Neeraja Kambham ◽  
Mrinmoy Sanyal ◽  
...  

Abstract Allogeneic hematopoietic cell transplantation can be curative in patients with leukemia and lymphoma. However, progressive growth of malignant cells, relapse after transplantation, and graft-versus-host disease (GVHD) remain important problems. The goal of the current murine study was to select a freshly isolated donor T-cell subset for infusion that separates antilymphoma activity from GVHD, and to determine whether the selected subset could effectively prevent or treat progressive growth of a naturally occurring B-cell lymphoma (BCL1) without GVHD after recipients were given T cell–depleted bone marrow transplantations from major histocompatibility complex–mismatched donors. Lethal GVHD was observed when total T cells, naive CD4+ T cells, or naive CD8+ T cells were used. Memory CD4+CD44hi and CD8+CD44hi T cells containing both central and effector memory cells did not induce lethal GVHD, but only memory CD8+ T cells had potent antilymphoma activity and promoted complete chimerism. Infusion of CD8+ memory T cells after transplantation was able to eradicate the BCL1 lymphoma even after progressive growth without inducing severe GVHD. In conclusion, the memory CD8+ T-cell subset separated graft antilymphoma activity from GVHD more effectively than naive T cells, memory CD4+ T cells, or memory total T cells.


Blood ◽  
2009 ◽  
Vol 113 (2) ◽  
pp. 358-369 ◽  
Author(s):  
Sabrina Kuttruff ◽  
Sven Koch ◽  
Alexandra Kelp ◽  
Graham Pawelec ◽  
Hans-Georg Rammensee ◽  
...  

Abstract NKp80, an activating homodimeric C-type lectin-like receptor (CTLR), is expressed on essentially all human natural killer (NK) cells and stimulates their cytotoxicity and cytokine release. Recently, we demonstrated that the ligand for NKp80 is the myeloid-specific CTLR activation-induced C-type lectin (AICL), which is encoded in the natural killer gene complex (NKC) adjacent to NKp80. Here, we show that NKp80 also is expressed on a minor fraction of human CD8 T cells that exhibit a high responsiveness and an effector memory phenotype. Gene expression profiling and flow cytometric analyses revealed that this NKp80+ T-cell subset is characterized by the coexpression of other NK receptors and increased levels of cytotoxic effector molecules and adhesion molecules mediating access to sites of inflammation. NKp80 ligation augmented CD3-stimulated degranulation and interferon (IFN)γ secretion by effector memory T cells. Furthermore, engagement of NKp80 by AICL-expressing transfectants or macrophages markedly enhanced CD8 T-cell responses in alloreactive settings. Collectively, our data demonstrate that NKp80 is expressed on a highly responsive subset of effector memory CD8 T cells with an inflammatory NK-like phenotype and promotes T-cell responses toward AICL-expressing cells. Hence, NKp80 may enable effector memory CD8 T cells to interact functionally with cells of myeloid origin at sites of inflammation.


2015 ◽  
Vol 212 (12) ◽  
pp. 2027-2039 ◽  
Author(s):  
Kyla D. Omilusik ◽  
J. Adam Best ◽  
Bingfei Yu ◽  
Steven Goossens ◽  
Alexander Weidemann ◽  
...  

ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in epithelial-mesenchymal transition–dependent tumor metastasis. Although the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is up-regulated by activated T cells, specifically in the KLRG1hi effector CD8+ T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8+ T cells after primary and secondary infection with a severe impairment in the generation of the KLRG1hi effector memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress Il7r and Il2 in CD8+ T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box sites in the Zeb2 gene and that T-bet and ZEB2 regulate similar gene expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Collectively, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8+ T cells.


2020 ◽  
Vol 8 (2) ◽  
pp. e000271
Author(s):  
Yarne Klaver ◽  
Maud Rijnders ◽  
Astrid Oostvogels ◽  
Rebecca Wijers ◽  
Marcel Smid ◽  
...  

IntroductionLocal T-cell immunity is recognized for its contribution to the evolution and therapy response of various carcinomas. Here, we investigated characteristics of tumor-infiltrating lymphocytes (TILs), as well as T-cell evasive mechanisms in different soft tissue sarcoma (STS) subtypes.MethodsLiposarcoma, gastrointestinal stromal tumor (GIST), leiomyosarcoma, myxofibrosarcoma and pleomorphic sarcomas were assessed for T-cell numbers and phenotypes using flow cytometry. Next-generation sequencing was used to analyze T-cell receptor repertoire, mutational load, immune cell frequencies, and expression of immune-related genes.ResultsGIST, myxofibrosarcoma and pleomorphic sarcoma showed high numbers of CD8+ TILs, with GIST having the lowest fraction of effector memory T cells. These TILs coexpress the immune checkpoints PD1, TIM3, and LAG3 in myxofibrosarcoma and pleomorphic sarcoma, yet TILs coexpressing these checkpoints were near negligible in GIST. Fractions of dominant T-cell clones among STS subtypes were lowest in GIST and liposarcoma, whereas mutational load was relatively low in all STS subtypes. Furthermore, myeloid-derived cells and expression of the costimulatory ligands CD86, ICOS-L and 41BB-L were lowest in GIST when compared with other STS subtypes.ConclusionSTS subtypes differ with respect to number and phenotypical signs of antitumor responsiveness of CD8+ TILs. Notably, GIST, myxofibrosarcoma and pleomorphic sarcoma harbor high numbers of CD8+ T cells, yet in the GIST microenvironment, these T cells are less differentiated and non-exhausted, which is accompanied with a relatively low expression of costimulatory ligands.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 917-917 ◽  
Author(s):  
Sarah Gothberg ◽  
Kanutte Huse ◽  
Arne Kolstad ◽  
Ole Christian Lingjærde ◽  
Bjørn Østenstad ◽  
...  

Abstract Background: Follicular lymphoma (FL) is the most common subtype of indolent non Hodgkin's lymphoma (NHL). Median survival is long (>10 years), but current chemo-immunotherapy regimens used for FL are usually not curative. While T cells in the FL tumor microenvironment are considered dysfunctional and associated with disease progression, a better understanding of T-cell signaling may reveal how to productively engage tumor-infiltrating T cells to kill lymphoma B cells. Our previous study showed that expression of the immune checkpoint receptor PD-1 was directly correlated with reduced cytokine signaling in FL T cells (Myklebust et al., Blood 2013). Antibody immunotherapy targeting the PD-1/PD-L1 pathway has shown significant activity in solid tumors, but these benefits have not been as profound in NHLs, including FL. Co-blockade of checkpoint inhibitors may therefore be necessary to generate optimal anti-tumor responses in FL. The hypothesis underlying this study was that characterizing signaling responses in FL tumor-infiltrating T cells will identify new targets for combination of checkpoint blockade. Methods: Surface expression of 9 checkpoint receptors governing T cell function was measured in subsets of CD4 and CD8 T cells from FL lymph node tumors (n = 14) and from healthy donor tonsils (n= 11) and peripheral blood samples (n = 7) using fluorescence flow cytometry. Patterns of checkpoint receptor expression were compared with 1) intracellular phospho-protein signaling response and 2) cytokine production for subsets of T cells infiltrating FL tumors and the corresponding T-cell populations in healthy tonsils. Phospho-specific flow cytometry measured phosphorylation of STATs and T cell receptor (TCR) signaling effectors within minutes following stimulation by IL-4, IL-7, IL-21, or α-CD3+α-CD28 (TCR stimulation) antibodies. Results: CD4 and CD8 T cells infiltrating FL tumors were gated into subsets defined by PD-1 and ICOS protein expression, and compared to cognate T cell subsets in healthy tonsils. FL and tonsil T cells closely matched in their signaling responses to IL-4, IL-7, and IL-21 stimulation, with PD-1 expressing cells (CD4+PD-1hiICOS+ (TFH) and CD8+PD-1int T cells) exhibiting modest phospho-protein signaling responses compared to T cells not expressing PD-1. Furthermore, TCR membrane proximal signaling events (p-CD3ζ, p-SLP76) following TCR stimulation were comparable in FL and tonsil T cells. This contrasted reduced phospho-ERK signaling in all CD4 and CD8 T cell subsets infiltrating FL tumors which distinguished them from tonsillar T cells. IFN-γ production also differed between FL and tonsils, as CD8 T cells infiltrating FL tumors produced less IFN-γ. Reduced IFN-γ production was independent of PD-1 expression, suggesting suppressed function in these T cells which could be due to inhibitory receptors other than PD-1. Of the 9 checkpoint receptors measured, PD-1 and T cell Ig and ITIM domain (TIGIT) were expressed at the highest frequency. In FL, TIGIT was expressed in 58% and 80% of CD8 effector and effector memory cells, respectively, as compared to 43% and 68% of the cognate healthy tonsillar subsets. TIGIT was also frequently expressed in CD4 FL T cells, as 52% and 79% of effector and effector memory cells expressed TIGIT, respectively, as compared to 16% and 59% of the corresponding subsets from healthy tonsils. viSNE analysis demonstrated that TIGIT and PD-1 were frequently co-expressed in FL T cells, and a large fraction of PD-1int T cells had high expression of TIGIT (Figure 1). These results provide a rationale for co-blockade of PD-1 and TIGIT in FL and for investigation of how co-blockade impacts T cell functions. Conclusions: These results reveal specific suppression of cytokine signaling in CD8 effector T cells infiltrating FL tumors and identify TIGIT and PD-1 as strong candidates for co-checkpoint blockade in FL. A deeper understanding of the interplay between checkpoint receptors and key T cell cytokine signaling events in FL will further assist in engineering immuno-therapeutic regiments that improve FL patient clinical outcomes. Disclosures Kolstad: Nordic Nanovector: Other: Membership of Scientific Advisory Board. Levy:Kite Pharma: Consultancy; Five Prime Therapeutics: Consultancy; Innate Pharma: Consultancy; Beigene: Consultancy; Corvus: Consultancy; Dynavax: Research Funding; Pharmacyclics: Research Funding. Irish:Incyte: Research Funding; Janssen: Research Funding; Cytobank, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Vol 9 (11) ◽  
pp. e002614
Author(s):  
Luis Enrique Munoz ◽  
Lei Huang ◽  
Ramireddy Bommireddy ◽  
Richa Sharma ◽  
Lenore Monterroza ◽  
...  

BackgroundPD-L1 is one of the major immune checkpoints which limits the effectiveness of antitumor immunity. Blockade of PD-L1/PD-1 has been a major improvement in the treatment of certain cancers, however, the response rate to checkpoint blockade remains low suggesting a need for new therapies. Metformin has emerged as a potential new drug for the treatment of cancer due to its effects on PD-L1 expression, T cell responses, and the immunosuppressive environment within tumors. While the benefits of metformin in combination with checkpoint blockade have been reported in animal models, little remains known about its effect on other types of immunotherapy.MethodsVaccine immunotherapy and metformin were administered to mice inoculated with tumors to investigate the effect of metformin and TMV vaccine on tumor growth, metastasis, PD-L1 expression, immune cell infiltration, and CD8 T cell phenotype. The effect of metformin on IFN-γ induced PD-L1 expression in tumor cells was assessed by flow cytometry, western blot, and RT-qPCR.ResultsWe observed that tumors that respond to metformin and vaccine immunotherapy combination show a reduction in surface PD-L1 expression compared with tumor models that do not respond to metformin. In vitro assays showed that the effect of metformin on tumor cell PD-L1 expression was mediated in part by AMP-activated protein kinase signaling. Vaccination results in increased T cell infiltration in all tumor models, and this was not further enhanced by metformin. However, we observed an increased number of CD8 T cells expressing PD-1, Ki-67, Tim-3, and CD62L as well as increased effector cytokine production after treatment with metformin and tumor membrane vesicle vaccine.ConclusionsOur data suggest that metformin can synergize with vaccine immunotherapy to augment the antitumor response through tumor-intrinsic mechanisms and also alter the phenotype and function of CD8 T cells within the tumor, which could provide insights for its use in the clinic.


Blood ◽  
2006 ◽  
Vol 107 (7) ◽  
pp. 2855-2862 ◽  
Author(s):  
Hang-Rae Kim ◽  
Myung Sun Hong ◽  
Jin Myung Dan ◽  
Insoo Kang

Abstract We investigated the effects of aging on the IL-7-mediated CD8+ T-cell survival pathway and of IL-7 therapy on T-cell immunity. Cells expressing IL-7 receptor (IL-7R) αhigh and αlow were identified in a CD45RA+ effector memory (EMCD45RA+, CD45RA+CCR7-) CD8+ T-cell subset. Elderly subjects (65 years and older) had an increased frequency of EMCD45RA+ IL-7Rαlow CD8+ T cells, leading to decreased STAT5 phosphorylation and survival responses to IL-7 compared with young subjects (40 years and younger). These EMCD45RA+ IL-7Rαlow cells were largely antigen experienced (CD27-CD28-), replicatively senescent (CD57+), and perforinhigh CD8+ T cells that had decreased IL-7Rα mRNA, independent of guanine and adenine binding protein α (GABPα) and growth factor independence-1 (GFI1) expression. In measuring T-cell receptor (TCR) repertoires of EMCD45RA+ CD8+ T cells, the elderly had a limited repertoire in IL-7Rαhigh and IL-7Rαlow cells, whereas the young had a diverse repertoire in IL-7Rαhigh but not in IL-7Rαlow cells. These findings suggest that aging affects IL-7Rα expression by EMCD45RA+ CD8+ T cells, leading to impaired signaling and survival responses to IL-7, and that IL-7 therapy may improve the survival of EMCD45RA+ CD8+ T cells with a diverse TCR repertoire in the young but not in the elderly.


2021 ◽  
Author(s):  
Stefan Naulaerts ◽  
Daniel M Borras ◽  
Asier Antoranz Martinez ◽  
Julie Messiaen ◽  
Yannick Van Herck ◽  
...  

Tumoural-CD8+T cells exhibit exhausted or dysfunctional states. Contrary to immunotherapy-responsive exhausted-CD8+T cells, the clinical features of dysfunctional-CD8+T cells are disputed. Hence, we conducted large-scale multi-omics and multi-dimensional mapping of CD8+T cell-states across multiple cancer patient-cohorts. This identified tumour-specific continuum of CD8+T cell-states across 6 human cancers, partly imprinted by organ-specific immuno-modulatory niches. Herein, melanoma and glioblastoma enriched prototypical exhausted (CD8+TEXT) and severely-dysfunctional (CD8+TSDF) states, respectively. Contrary to CD8+TEXT, CD8+TSDF displayed transcriptomic and epigenetic effector/cytolytic dysfunctions, and dysregulated effector/memory single-cell trajectories, culminating into maladaptive pro-death stress and cell-cycle defects. Suboptimal antigen-priming underscored CD8+TSDF, which was distinct from immune-checkpoints 'rich' CD8+TEXT, reflecting chronic antigen-stimulation. Continuum variation also existed on tumour spatial-level, with convergent (CD8+TEXT-supportive vascular regions) and divergent features (dysfunctional CD4+T::CD8+TSDF cell-to-cell interactions) between melanoma and glioblastoma. Globally, IFNG-IL2 disparities, paucity of intra-tumoural CD4+/CD8+T cells, and myeloid TGFB/wound healing responses, distinguished CD8+TSDF-landscape. Within immuno-oncology clinical-trials, anti-PD1 immunotherapy failed to 'reinvigorate' CD8+TSDF-landscape, and instead facilitated effector-dysfunction and TGFB/wound healing. However, cellular immunotherapies (dendritic cell-vaccines, adoptive T-cell therapy) ameliorated assorted CD8+TSDF-landscape disparities, highlighting a roadmap for anti-glioblastoma multimodal-immunotherapy. Collectively, our study comprehensively expands clinical-knowledge on CD8+T cell-exhaustion and suggests that tumour-specific, pre-existing CD8+TEXT/TSDF-states, determine immunotherapy-responses.


Sign in / Sign up

Export Citation Format

Share Document