scholarly journals Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection

2015 ◽  
Vol 212 (12) ◽  
pp. 2027-2039 ◽  
Author(s):  
Kyla D. Omilusik ◽  
J. Adam Best ◽  
Bingfei Yu ◽  
Steven Goossens ◽  
Alexander Weidemann ◽  
...  

ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in epithelial-mesenchymal transition–dependent tumor metastasis. Although the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is up-regulated by activated T cells, specifically in the KLRG1hi effector CD8+ T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8+ T cells after primary and secondary infection with a severe impairment in the generation of the KLRG1hi effector memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress Il7r and Il2 in CD8+ T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box sites in the Zeb2 gene and that T-bet and ZEB2 regulate similar gene expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Collectively, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8+ T cells.

Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3463-3471 ◽  
Author(s):  
Christoph Hess ◽  
Terry K. Means ◽  
Patrick Autissier ◽  
Tonia Woodberry ◽  
Marcus Altfeld ◽  
...  

CD8 T cells play a key role in host defense against intracellular pathogens. Efficient migration of these cells into sites of infection is therefore intimately linked to their effector function. The molecular mechanisms that control CD8 T-cell trafficking into sites of infection and inflammation are not well understood, but the chemokine/chemokine receptor system is thought to orchestrate this process. Here we systematically examined the chemokine receptor profile expressed on human CD8 T cells. Surprisingly, we found that CXC chemokine receptor 1 (CXCR1), the predominant neutrophil chemokine receptor, defined a novel interleukin-8/CXC ligand 8 (IL-8/CXCL8)–responsive CD8 T-cell subset that was enriched in perforin, granzyme B, and interferon-γ (IFNγ), and had high cytotoxic potential. CXCR1 expression was down-regulated by antigen stimulation both in vitro and in vivo, suggesting antigen-dependent shaping of the migratory characteristics of CD8 T cells. On virus-specific CD8 T cells from persons with a history of Epstein-Barr virus (EBV) and influenza infection, CXCR1 expression was restricted to terminally differentiated effector memory cells. In HIV-1 infection, CXCR1-expressing HIV-1–specific CD8 T cells were present only in persons who were able to control HIV-1 replication during structured treatment interruptions. Thus, CXCR1 identifies a subset of CD8 T cells poised for immediate cytotoxicity and early recruitment into sites of innate immune system activation.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3230-3239 ◽  
Author(s):  
Suparna Dutt ◽  
Jeanette Baker ◽  
Holbrook E. Kohrt ◽  
Neeraja Kambham ◽  
Mrinmoy Sanyal ◽  
...  

Abstract Allogeneic hematopoietic cell transplantation can be curative in patients with leukemia and lymphoma. However, progressive growth of malignant cells, relapse after transplantation, and graft-versus-host disease (GVHD) remain important problems. The goal of the current murine study was to select a freshly isolated donor T-cell subset for infusion that separates antilymphoma activity from GVHD, and to determine whether the selected subset could effectively prevent or treat progressive growth of a naturally occurring B-cell lymphoma (BCL1) without GVHD after recipients were given T cell–depleted bone marrow transplantations from major histocompatibility complex–mismatched donors. Lethal GVHD was observed when total T cells, naive CD4+ T cells, or naive CD8+ T cells were used. Memory CD4+CD44hi and CD8+CD44hi T cells containing both central and effector memory cells did not induce lethal GVHD, but only memory CD8+ T cells had potent antilymphoma activity and promoted complete chimerism. Infusion of CD8+ memory T cells after transplantation was able to eradicate the BCL1 lymphoma even after progressive growth without inducing severe GVHD. In conclusion, the memory CD8+ T-cell subset separated graft antilymphoma activity from GVHD more effectively than naive T cells, memory CD4+ T cells, or memory total T cells.


Blood ◽  
2009 ◽  
Vol 113 (2) ◽  
pp. 358-369 ◽  
Author(s):  
Sabrina Kuttruff ◽  
Sven Koch ◽  
Alexandra Kelp ◽  
Graham Pawelec ◽  
Hans-Georg Rammensee ◽  
...  

Abstract NKp80, an activating homodimeric C-type lectin-like receptor (CTLR), is expressed on essentially all human natural killer (NK) cells and stimulates their cytotoxicity and cytokine release. Recently, we demonstrated that the ligand for NKp80 is the myeloid-specific CTLR activation-induced C-type lectin (AICL), which is encoded in the natural killer gene complex (NKC) adjacent to NKp80. Here, we show that NKp80 also is expressed on a minor fraction of human CD8 T cells that exhibit a high responsiveness and an effector memory phenotype. Gene expression profiling and flow cytometric analyses revealed that this NKp80+ T-cell subset is characterized by the coexpression of other NK receptors and increased levels of cytotoxic effector molecules and adhesion molecules mediating access to sites of inflammation. NKp80 ligation augmented CD3-stimulated degranulation and interferon (IFN)γ secretion by effector memory T cells. Furthermore, engagement of NKp80 by AICL-expressing transfectants or macrophages markedly enhanced CD8 T-cell responses in alloreactive settings. Collectively, our data demonstrate that NKp80 is expressed on a highly responsive subset of effector memory CD8 T cells with an inflammatory NK-like phenotype and promotes T-cell responses toward AICL-expressing cells. Hence, NKp80 may enable effector memory CD8 T cells to interact functionally with cells of myeloid origin at sites of inflammation.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi104-vi104
Author(s):  
Elizabeth Ogando-Rivas ◽  
Paul Castillo ◽  
Noah Jones ◽  
Vrunda Trivedi ◽  
Jeffrey Drake ◽  
...  

Abstract BACKGROUND Adoptive T-cell therapies have been successfully used as treatment for patients diagnosed with advanced cancers. Unfortunately, for some refractory cancers, they have failed. To overcome this, checkpoint inhibitors have shown to rescue immune anti-tumor responses. We hypothesized that in-vitro checkpoint blockade during T-cell stimulation and expansion with RNA-pulsed dendritic cells may enhance the activity of antigen-specific T-cells and improve the efficacy of ACT platforms. METHODS Human PBMCs were isolated from CMV seropositive donors to generate DCs and pulsed them with CMVpp65-mRNA to educate T-cells in co-culture for 15-days. We targeted pp65 antigen which is ubiquitously expressed by glioblastoma cells. Three checkpoint blockade conditions were evaluated (anti-PD1, anti-Tim3 and anti-PD1+Tim3). IL2 was added every 3 days as well as the blockade antibodies. Immunephenotyping was performed on Day-0 and Day-15. Polyfunctional antigen specific responses were evaluated upon rechallenge with CMVpp65 peptides. RESULTS CMVpp65 activated CD8+ T-cells upregulate Lag3 and Tim3 (p= < 0.0001). Tim3 blockade alone or in combination led to a significant upregulation of Lag3 expression on CD8+pp65Tetramer+ central memory, effector memory, and TEMRA T-cells. This latter T-cell subset uniquely maintain double-positive Tim3/Lag3 expression after blockade. In contrast, PD-1 blockade had minimal effects on Tim3 or Lag3 expression. In addition, IFN-g secretion was reduced in T-cells treated with Tim3 blockade in a dose-dependent manner (p= 0.004). CONCLUSION In this study, we have identified a potential activating component of Tim3 and linkage between Tim3 and Lag3 signaling upon blocking Tim3 axis during T-cell antigen presenting cell interactions that should be considered when targeting immune checkpoints for clinical use.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1103-1103
Author(s):  
Caroline Mary Besley ◽  
Eleni Kotsiou ◽  
Robert Petty ◽  
Ajanthah Sangaralingum ◽  
Rifca Le Dieu ◽  
...  

Abstract Introduction IMiDs like lenalidomide have immunostimulatory effects and therefore the potential to reduce relapse after allogeneic haematopoietic cell transplant (AHCT) by increasing graft-versus-tumour (GvT) effects. However, early clinical experience using IMiDs after AHCT has been limited by induction of graft-versus-host disease (GvHD). Although lenalidomide has been shown to augment mitogen-stimulated T cell responses, the effects of this drug on T cell alloresponses that mediate both GvT and GvHD have not been well defined. Better understanding of the immune mechanisms involved would facilitate tracking and manipulation of lenalidomide-potentiated alloresponses and could reveal ways to use the drug to maximise GvT without excess GvHD. Therefore we used an HLA-mismatched in vitro model to analyse in depth the effects of lenalidomide on functional human T cell alloresponses. Materials and Methods We cocultured CFSE-labelled PBMC from healthy donors with irradiated allogeneic PBMC in the presence of 1μM lenalidomide, vehicle control or following pre-incubation with 1μM lenalidomide for 24 hours. Functional alloresponses were quantified after 7-9 days of allo-coculture by flow cytometry. In addition, allo-coculture responders were flow-sorted into alloproliferative or non-proliferative fractions and extracted RNA used for gene expression profiling. Results Addition of lenalidomide to allo-cocultures increased the total number of responder cells (p<0.001) due primarily to increased proliferation (74% median increase) of allospecific responder CD8 (alloCD8) T cells (p<0.001). Proliferation kinetic analysis showed that lenalidomide did not increase the number of cell divisions of alloCD8 cells, but increased the CD8 allospecific precursor frequency within the responder cell pool (from a median of 2.6% to 10%, p<0.001) consistent with lowering the activation threshold of alloCD8 cells. A significant enrichment for effector memory phenotype was observed in these cells (median 48% increased to 59%, p<0.001). Addition of lenalidomide to allo-cocultures also increased the proportion of alloCD8 cells secreting TNF-α, IFN-γ and expressing CD107a, as well as polyfunctional effector cells (Fig. 1A). Although lenalidomide did not increase proliferation of CD4 cells, TNF-α production by proliferative CD4 T cells was increased suggesting they may contribute indirectly to CD8 alloresponses. Pre-treatment of stimulators, responders or both prior to allo-coculture did not result in increased alloCD8 proliferation, indicating that the drug must be present in the co-culture to exert an effect. Finally to assess whether lenalidomide exerted effects via potentiation of intrinsic alloproliferative pathways or by qualitatively different pathways we performed gene expression profiling of CD8 T cells sorted from allo-cocultures. As expected, alloCD8 cells from untreated allo-cocultures demonstrated >2-fold altered expression of >500 genes mostly associated with DNA synthesis and cellular proliferation when compared to non-proliferative CD8 cells. Lenalidomide-treated alloCD8 cells showed further increases in expression of many of these genes; however treatment also resulted in significant changes in expression of additional genes in alloCD8 cells compared to untreated alloCD8 cells (Fig 1B). These included >8 fold increases in expression of genes reported to potentiate T cell immune responses in other settings including PFKFB4,Pirin, and SOCS2 (part of the E3 ubiquitin ligase complex with cereblon), and >5 fold decreases in genes which can suppress T cell activation and memory differentiation including FAIM3 and PMCH. Conclusion We have shown for the first time that lenalidomide potentiates human alloresponses primarily by increasing alloproliferation of effector memory CD8 T cells. This likely results from altered expression of (i) multiple genes common to the intrinsic CD8 alloproliferative response and (ii) additional genes involved in the control of T cell activation and differentiation specific to lenalidomide-potentiated CD8 alloresponses. Furthermore treatment enhances the functional capacity of these cells by conferring greater polyfunctional effector potential. These findings could enable tracking of CD8 alloresponses induced by lenalidomide after AHCT and could inform novel clinical strategies for the use of the drug to augment GvT effects. Figure 1 Figure 1. Disclosures Gribben: Celgene: Research Funding; Pharmacyclics: Honoraria; Roche: Honoraria.


Blood ◽  
2006 ◽  
Vol 107 (7) ◽  
pp. 2855-2862 ◽  
Author(s):  
Hang-Rae Kim ◽  
Myung Sun Hong ◽  
Jin Myung Dan ◽  
Insoo Kang

Abstract We investigated the effects of aging on the IL-7-mediated CD8+ T-cell survival pathway and of IL-7 therapy on T-cell immunity. Cells expressing IL-7 receptor (IL-7R) αhigh and αlow were identified in a CD45RA+ effector memory (EMCD45RA+, CD45RA+CCR7-) CD8+ T-cell subset. Elderly subjects (65 years and older) had an increased frequency of EMCD45RA+ IL-7Rαlow CD8+ T cells, leading to decreased STAT5 phosphorylation and survival responses to IL-7 compared with young subjects (40 years and younger). These EMCD45RA+ IL-7Rαlow cells were largely antigen experienced (CD27-CD28-), replicatively senescent (CD57+), and perforinhigh CD8+ T cells that had decreased IL-7Rα mRNA, independent of guanine and adenine binding protein α (GABPα) and growth factor independence-1 (GFI1) expression. In measuring T-cell receptor (TCR) repertoires of EMCD45RA+ CD8+ T cells, the elderly had a limited repertoire in IL-7Rαhigh and IL-7Rαlow cells, whereas the young had a diverse repertoire in IL-7Rαhigh but not in IL-7Rαlow cells. These findings suggest that aging affects IL-7Rα expression by EMCD45RA+ CD8+ T cells, leading to impaired signaling and survival responses to IL-7, and that IL-7 therapy may improve the survival of EMCD45RA+ CD8+ T cells with a diverse TCR repertoire in the young but not in the elderly.


2019 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Alice Bayiyana ◽  
Samuel Okurut ◽  
Rose Nabatanzi ◽  
Godfrey Zziwa ◽  
David R. Boulware ◽  
...  

Despite improvement in the prognosis of HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) patients on antiretroviral therapy (ART), cryptococcal meningitis (CM) still causes 10–15% mortality among HIV-infected patients. The immunological impact of ART on the CD4+ and CD8+ T cell repertoire during cryptococcal co-infection is unclear. We determined longitudinal phenotypic changes in T cell subsets among patients with CM after they initiated ART. We hypothesized that ART alters the clonotypic phenotype and structural composition of CD4+ and CD8+ T cells during CM co-infection. For this substudy, peripheral blood mononuclear cells (PBMC) were isolated at four time points from CM patients following ART initiation during the parent study (ClinicalTrials.gov number, NCT01075152). Phenotypic characterization of CD4+ and CD8+ T cells was done using T cell surface marker monoclonal antibodies by flow cytometry. There was variation in the expression of immunophenotypic markers defining central memory (CD27+CD45R0+), effector memory (CD45R0+CD27–), immune activation (CD38+ and Human Leucocyte Antigen DR (HLA-DR+), and exhaustion (Programmed cell death protein one (PD-1) in the CD4+ T cell subset. In comparison to the CD4+ T cell population, the CD8+ central memory subset declined gradually with minimal increase in the effector memory subset. Both CD4+ and CD8+ T cell immune exhaustion and activation markers remained elevated over 12 weeks. The relative surge and decline in the expression of T cell surface markers outlines a variation in the differentiation of CD4+ T cells during ART treatment during CM co-infection.


2015 ◽  
Vol 11 (3) ◽  
pp. e1004671 ◽  
Author(s):  
Krista E. van Meijgaarden ◽  
Mariëlle C. Haks ◽  
Nadia Caccamo ◽  
Francesco Dieli ◽  
Tom H. M. Ottenhoff ◽  
...  

1983 ◽  
Vol 158 (3) ◽  
pp. 649-669 ◽  
Author(s):  
H Kawanishi ◽  
L Saltzman ◽  
W Strober

Our previous studies indicated that cloned T cells obtained from Peyer's patches (PP) (Lyt-1+, 2-, Ia+, and H-2K/D+) evoked immunoglobulin (Ig) class switching of PP B cells from sIgM to sIgA cells in vitro; however, these switch T cells could not in themselves provide optimal help for the differentiation of postswitch sIgA-bearing PP B cells to IgA-secreting cells. Thus, in the present report we described studies focused on mechanisms regulating terminal differentiation of the postswitch PP sIgA-bearing B cells. First, to explore the effect of T cell-derived B cell differentiation factor(s) (BCDF) and macrophage factor(s) (MF) on the terminal maturation of PP B cells, LPS-stimulated PP B cells were co-cultured for 7 d with cloned T cells in the presence or absence of the above factors. In the absence of PP cloned T cells the BCDF and MF had only a modest effect on IgA production, whereas in the presence of PP, but not spleen cloned T cells, IgA production was increased. Next, to investigate the effect of T cells derived from a gut-associated lymphoid tissue (GALT), mesenteric lymph nodes (MLN), as well as from spleen on terminal differentiation of postswitch sIgA PP B cells, LPS-driven PP B cells were precultured with the cloned T cells to induce a switch to sIgA, and subsequently cultured with MLN or spleen T cells or a Lyt-2+-depleted T cell subset in the presence of a T-dependent polyclonal mitogen, staphylococcal protein A. Alternatively, in the second culture period BCDF alone was added, instead of T cells and protein A. Here it was found that B cells pre-exposed to switch T cells from PP, but not spleen, were induced to produce greatly increased amounts of IgA in the presence of protein A and T cells or a Lyt-2+-depleted T cell subset as well as in the presence of BCDF alone. Furthermore, in the presence of BCDF alone many B cells expressed cytoplasmic IgA. These observations strongly support the view that the terminal differentiation of postswitch sIgA B cells is governed by helper T cells and macrophages, or factors derived from such cells. Such cells or factors do not affect preswitch B cells.


1994 ◽  
Vol 179 (2) ◽  
pp. 413-424 ◽  
Author(s):  
G Dadaglio ◽  
S Garcia ◽  
L Montagnier ◽  
M L Gougeon

We have analyzed the V beta usage by CD4+ and CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals in response to an in vitro stimulation with the superantigenic erythrogenic toxin A (ETA) of Streptococcus pyogenes. ETA amplifies specifically CD4+ and CD8+ T cells from control donors expressing the V beta 8 and the V beta 12 elements. When peripheral T cells from asymptomatic HIV-infected individuals were stimulated with ETA, there was a complete lack of activation of the V beta 8+ T cell subset, whereas the V beta 12+ T cell subset responded normally to the superantigen. This V beta-specific anergy, which was also observed in response to staphylococcal enterotoxin E (SEE), affected both CD4+ and CD8+ T cells and represented an intrinsic functional defect rather than a specific lack of response to bacterial superantigens since it was also observed after a stimulation with V beta 8 monoclonal antibodies. The V beta 8 anergic T cells did not express interleukin 2 receptors (IL-2Rs) and failed to proliferate in response to exogenous IL-2 or IL-4, suggesting that this anergy was not a reversible process, at least by the use of these cytokines. The unresponsiveness of the V beta 8 T cell subset is frequent since it was found in 56% of the patients studied, and comparison of the clinical status of responder vs. anergic patients indicated that the only known common factor between them was HIV infection. In addition, it is noteworthy that the anergy of the V beta 8 subset may be a very early phenomenon since it was found in a patient at Centers for Disease Control stage I of the disease. These data provide evidence that a dominant superantigen may be involved in the course of HIV infection and that the contribution of HIV has to be considered.


Sign in / Sign up

Export Citation Format

Share Document