scholarly journals Stoichiometric evolutions of PH3 under high pressure: implication for high-Tc superconducting hydrides

2019 ◽  
Vol 6 (3) ◽  
pp. 524-531 ◽  
Author(s):  
Ye Yuan ◽  
Yinwei Li ◽  
Guoyong Fang ◽  
Guangtao Liu ◽  
Cuiying Pei ◽  
...  

Abstract The superconductivity of hydrides under high pressure has attracted a great deal of attention since the recent observation of the superconducting transition at 203 K in strongly compressed H2S. It has been realized that the stoichiometry of hydrides might change under high pressure, which is crucial in understanding the superconducting mechanism. In this study, PH3 was studied to understand its superconducting transition and stoichiometry under high pressure using Raman, IR and X-ray diffraction measurements, as well as theoretical calculations. PH3 is stable below 11.7 GPa and then it starts to dehydrogenate through two dimerization processes at room temperature and pressures up to 25 GPa. Two resulting phosphorus hydrides, P2H4 and P4H6, were verified experimentally and can be recovered to ambient pressure. Under further compression above 35 GPa, the P4H6 directly decomposed into elemental phosphorus. Low temperature can greatly hinder polymerization/decomposition under high pressure and retains P4H6 up to at least 205 GPa. The superconductivity transition temperature of P4H6 is predicted to be 67 K at 200 GPa, which agrees with the reported result, suggesting that it might be responsible for superconductivity at higher pressures. Our results clearly show that P2H4 and P4H6 are the only stable P–H compounds between PH3 and elemental phosphorus, which is helpful for shedding light on the superconducting mechanism.

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 910
Author(s):  
Daniel Diaz-Anichtchenko ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Simone Anzellini ◽  
Daniel Errandonea

We report on high-pressure synchrotron X-ray diffraction measurements on Ni3V2O8 at room-temperature up to 23 GPa. According to this study, the ambient-pressure orthorhombic structure remains stable up to the highest pressure reached in the experiments. We have also obtained the pressure dependence of the unit-cell parameters, which reveals an anisotropic compression behavior. In addition, a room-temperature pressure–volume third-order Birch–Murnaghan equation of state has been obtained with parameters: V0 = 555.7(2) Å3, K0 = 139(3) GPa, and K0′ = 4.4(3). According to this result, Ni3V2O8 is the least compressible kagome-type vanadate. The changes of the crystal structure under compression have been related to the presence of a chain of edge-sharing NiO6 octahedral units forming kagome staircases interconnected by VO4 rigid tetrahedral units. The reported results are discussed in comparison with high-pressure X-ray diffraction results from isostructural Zn3V2O8 and density-functional theory calculations on several isostructural vanadates.


2019 ◽  
Vol 72 (2) ◽  
pp. 87 ◽  
Author(s):  
Hiroshi Abe ◽  
Takahiro Takekiyo ◽  
Yukihiro Yoshimura ◽  
Nozomu Hamaya ◽  
Shinichiro Ozawa

Crystal polymorphs and multiple crystallization pathways of a room-temperature ionic liquid (RTIL) were observed only under high pressure (HP). The RTIL was 1-ethyl-3-methylimidazolium nitrate, [C2mim][NO3]. The HP-crystal polymorphs were related to conformations of the C2mim+ cation, and the HP-crystal pathways determined by the presence or absence of the planar′ (P′) conformation of the C2mim+ cation were switched at the bifurcation pressure (PB). Above PB, modulated crystal structures derived from the HP-inherent P′ conformer. Simultaneous X-ray diffraction and differential scanning calorimetry measurements, accompanied by optical microscope observations, confirmed the normal low-temperature crystallization of [C2mim][NO3] under ambient pressure.


2014 ◽  
Vol 887-888 ◽  
pp. 311-314
Author(s):  
Xiu Mei Han ◽  
Yun Dong ◽  
Tian Bo Zhao ◽  
Xiao Ping Lin ◽  
Jing Luo ◽  
...  

The microstructures of the Mg-6Zn-2Y alloy solidified under high pressures were investigated using scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The room-temperature compression behavior was analyzed through experiments, showing that the microstructures of the alloys are consisted of α-Mg and quasicrystal I-Mg3Zn6Y phases. With solidification pressure increasing, the microstructures were refined, and the morphologies of the inter-dendritic secondary phase were improved from continuous networks into long-island and granule. The compression strength, yielding strength and compressibility were increased significantly corresponding with solidification pressure, from 259.02 MPa, 230.39 MPa and 18.3% under ambient pressure to 361.43 MPa, 272.25 MPa and 33.1% under high pressure of 6 GPa. The cleavage planes are flat, and the cleavage steps are straight under ambient pressure. However, the cleavage planes are small and rough under 4-6 GPa; tearing dimples occur in the tearing area, indicating that the degree of cleavage fracture decreases under high pressure.


2000 ◽  
Vol 33 (2) ◽  
pp. 279-284 ◽  
Author(s):  
J.-E. Jørgensen ◽  
J. Staun Olsen ◽  
L. Gerward

ReO3has been studied at pressures up to 52 GPa by X-ray powder diffraction. The previously observed cubicIm3¯ high-pressure phase was shown to transform to a monoclinic MnF3-related phase at about 3 GPa. All patterns recorded above 12 GPa could be indexed on rhombohedral cells. The compressibility was observed to decrease abruptly at 38 GPa. It is therefore proposed that the oxygen ions are hexagonally close packed above this pressure, giving rise to two rhombohedral phases labelled I and II. The zero-pressure bulk moduliBoof the observed phases were determined and the rhombohedral phase II was found to have an extremely large value of 617 (10) GPa. It was found that ReO3transforms back to thePm3¯mphase found at ambient pressure.


1997 ◽  
Vol 499 ◽  
Author(s):  
Allen C. Ho ◽  
Maurice K. Granger ◽  
Arthur L. Ruoff

ABSTRACTThe equation of state (EOS) of Li3N has been determined by energy-dispersive x-ray diffraction (EDXD) using synchrotron radiation up to 35 GPa at ambient temperature. Both the hexagonal D6h4(P63/mmc) and the hexagonal D6h1(P6/mmm) phases were present at ambient pressure. The D6h1 -structure completely transforms into the D6h4 -structure at modest pressure. The change in Gibb's free energy as a function of pressure for Li3N was calculated using the experimental EOS.


1987 ◽  
Vol 01 (02) ◽  
pp. 363-365 ◽  
Author(s):  
Guangcan Che ◽  
Jingkui Liang ◽  
Wei Chen ◽  
Sishen Xie ◽  
Yude Yu ◽  
...  

In Ba-R-Cu-O system (R=La, Y) , high Tc superconductor have been discovered (1–3). The room temperature section of the phase diagram in BaO-Y2O3-CuO system has been completed by means of X-ray diffraction, thermal analysis and superconducting measurements.


2015 ◽  
Vol 70 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Daniela Vitzthum ◽  
Stefanie A. Hering ◽  
Lukas Perfler ◽  
Hubert Huppertz

AbstractOrthorhombic dysprosium orthogallate DyGaO3 and trigonal gallium orthoborate GaBO3 were synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8.5 GPa/1350 °C and 8 GPa/700 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data collected at room temperature. The orthorhombic dysprosium orthogallate crystallizes in the space group Pnma (Z = 4) with the parameters a = 552.6(2), b = 754.5(2), c = 527.7(2) pm, V = 0.22002(8) nm3, R1 = 0.0309, and wR2 = 0.0662 (all data) and the trigonal compound GaBO3 in the space group R3̅c (Z = 6) with the parameters a = 457.10(6), c = 1419.2(3) pm, V = 0.25681(7) nm3, R1 = 0.0147, and wR2 = 0.0356 (all data).


1999 ◽  
Vol 14 (6) ◽  
pp. 2484-2487 ◽  
Author(s):  
Seo-Yong Cho ◽  
Chang-Hun Kim ◽  
Dong-Wan Kim ◽  
Kug Sun Hong ◽  
Jong-Hee Kim

Ln(Mg1/2Ti1/2)O3 (Ln = Dy, La, Nd, Pr, Sm, Y) compositions have been prepared, and their pertinent properties for use as thin film substrates for YBa2Cu3Ox (YBCO) were measured. X-ray diffraction shows that Ln(Mg1/2Ti1/2)O3 compositions have noncubic symmetry and the GdFeO3-type structure. Dielectric constant measurements revealed values between 22 and 27, which are larger than those of the LnAlO3 family. Quality factor (=1/ tan δ) of the ceramic specimens measured at room temperature was larger than 3000 at 10 GHz. Among the compounds, La(Mg1/2Ti1/2)O3 exhibited the highest dielectric constant and the lowest dielectric loss. Chemical reaction was observed between Ln(Mg1/2Ti1/2)O3 (Ln = Dy, Sm, Y) and YBCO after annealing a 1 : 1 mixture at 950 °C. Considering dielectric and physical properties, La(Mg1/2Ti1/2)O3 and Sm(Mg1/2Ti1/2)O3 were determined to be suitable substrates for YBCO thin film used in microwave applications.


Author(s):  
Lun Xiong ◽  
Pu Tu ◽  
Yongqing Hu ◽  
Xiang Hou ◽  
Shiyun Wu ◽  
...  

The equation of state (EOS) of mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text] Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 was studied by synchrotron radiation X-ray diffraction (XRD) at room-temperature in a diamond anvil cell (DAC). The results showed that the hexagonal structure is maintained to the highest pressure of 23.1 GPa. The bulk modulus and its first derivative obtained from XRD data are [Formula: see text] GPa and [Formula: see text], respectively. In addition, we have investigated the high-pressure electrical conductivity of the mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text]Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 to 22.9 GPa in a DAC. It is found that the resistance decreases with the increase of pressure and changes exponentially.


Sign in / Sign up

Export Citation Format

Share Document