Artificial Intelligence and Learning

Education ◽  
2021 ◽  
Author(s):  
Jaekyung Lee ◽  
Richard Lamb ◽  
Sunha Kim

Rapid technological advances, particularly recent artificial intelligence (AI) revolutions such as digital assistants (e.g., Alexa, Siri), self-driving cars, and cobots and robots, have changed human lives and will continue to have even bigger impact on our future society. Some of those AI inventions already shocked people across the world by wielding their power of surpassing human intelligence and cognitive abilities; see, for example, the examples of Watson (IBM’s supercomputer) and AlphaGo (Google DeepMind’s AI program) beating the human champions of Jeopardy and Go games, respectively. Then many questions arise. How does AI affect human beings and the larger society? How should we educate our children in the AI age? What changes are necessary to help humans better adapt and flourish in the AI age? What are the key enablers of the AI revolution, such as big data and machine learning? What are the applications of AI in education and how do they work? Answering these critical questions requires interdisciplinary research. There is no shortage of research on AI per se, since it is a highly important and impactful research topic that cuts across many fields of science and technology. Nevertheless, there are no effective guidelines for educational researchers and practitioners that give quick summaries and references on this topic. Because the intersection of AI and education/learning is an emerging field of research, the literature is in flux and the jury is still out. Thus, our goal here is to give readers a quick introduction to this broad topic by drawing upon a limited selection of books, reports, and articles. This entry is organized into three major sections, where we present commentaries along with a list of annotated references on each of the following areas: (1) AI Impacts on the Society and Education; (2) AI Enablers: Big Data in Education and Machine Learning; and (3) Applications of AI in Education: Examples and Evidence.

Proceedings ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 24
Author(s):  
Eduard Alexandru Stoica ◽  
Daria Maria Sitea

Nowadays society is profoundly changed by technology, velocity and productivity. While individuals are not yet prepared for holographic connection with banks or financial institutions, other innovative technologies have been adopted. Lately, a new world has been launched, personalized and adapted to reality. It has emerged and started to govern almost all daily activities due to the five key elements that are foundations of the technology: machine to machine (M2M), internet of things (IoT), big data, machine learning and artificial intelligence (AI). Competitive innovations are now on the market, helping with the connection between investors and borrowers—notably crowdfunding and peer-to-peer lending. Blockchain technology is now enjoying great popularity. Thus, a great part of the focus of this research paper is on Elrond. The outcomes highlight the relevance of technology in digital finance.


Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


2021 ◽  
Author(s):  
Richard Büssow ◽  
Bruno Hain ◽  
Ismael Al Nuaimi

Abstract Objective and Scope Analysis of operational plant data needs experts in order to interpret detected anomalies which are defined as unusual operation points. The next step on the digital transformation journey is to provide actionable insights into the data. Prescriptive Maintenance defines in advance which kind of detailed maintenance and spare parts will be required. This paper details requirements to improve these predictions for rotating equipment and show potential to integrate the outcome into an operational workflow. Methods, Procedures, Process First principle or physics-based modelling provides additional insights into the data, since the results are directly interpretable. However, such approaches are typically assumed to be expensive to build and not scalable. Identification of and focus on the relevant equipment to be modeled in a hybrid model using a combination of first principle physics and machine learning is a successful strategy. The model is trained using a machine learning approach with historic or current real plant data, to predict conditions which have not occurred before. The better the Artificial Intelligence is trained, the better the prediction will be. Results, Observations, Conclusions The general aim when operating a plant is the actual usage of operational data for process and maintenance optimization by advanced analytics. Typically a data-driven central oversight function supports operations and maintenance staff. A major lesson-learned is that the results of a rather simple statistical approach to detect anomalies fall behind the expectations and are too labor intensive. It is a widely spread misinterpretation that being able to deal with big data is sufficient to come up with good prediction quality for Prescriptive Maintenance. What big data companies are normally missing is domain knowledge, especially on plant critical rotating equipment. Without having domain knowledge the relevant input into the model will have shortcomings and hence the same will apply to its predictions. This paper gives an example of a refinery where the described hybrid model has been used. Novel and Additive Information First principle models are typically expensive to build and not scalable. This hybrid model approach, combining first principle physics based models with artificial intelligence and integration into an operational workflow shows a new way forward.


Author(s):  
Anastasiia Ivanitska ◽  
Dmytro Ivanov ◽  
Ludmila Zubik

The analysis of the available methods and models of formation of recommendations for the potential buyer in network information systems for the purpose of development of effective modules of selection of advertising is executed. The effectiveness of the use of machine learning technologies for the analysis of user preferences based on the processing of data on purchases made by users with a similar profile is substantiated. A model of recommendation formation based on machine learning technology is proposed, its work on test data sets is tested and the adequacy of the RMSE model is assessed. Keywords: behavior prediction; advertising based on similarity; collaborative filtering; matrix factorization; big data; machine learning


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pooya Tabesh

Purpose While it is evident that the introduction of machine learning and the availability of big data have revolutionized various organizational operations and processes, existing academic and practitioner research within decision process literature has mostly ignored the nuances of these influences on human decision-making. Building on existing research in this area, this paper aims to define these concepts from a decision-making perspective and elaborates on the influences of these emerging technologies on human analytical and intuitive decision-making processes. Design/methodology/approach The authors first provide a holistic understanding of important drivers of digital transformation. The authors then conceptualize the impact that analytics tools built on artificial intelligence (AI) and big data have on intuitive and analytical human decision processes in organizations. Findings The authors discuss similarities and differences between machine learning and two human decision processes, namely, analysis and intuition. While it is difficult to jump to any conclusions about the future of machine learning, human decision-makers seem to continue to monopolize the majority of intuitive decision tasks, which will help them keep the upper hand (vis-à-vis machines), at least in the near future. Research limitations/implications The work contributes to research on rational (analytical) and intuitive processes of decision-making at the individual, group and organization levels by theorizing about the way these processes are influenced by advanced AI algorithms such as machine learning. Practical implications Decisions are building blocks of organizational success. Therefore, a better understanding of the way human decision processes can be impacted by advanced technologies will prepare managers to better use these technologies and make better decisions. By clarifying the boundaries/overlaps among concepts such as AI, machine learning and big data, the authors contribute to their successful adoption by business practitioners. Social implications The work suggests that human decision-makers will not be replaced by machines if they continue to invest in what they do best: critical thinking, intuitive analysis and creative problem-solving. Originality/value The work elaborates on important drivers of digital transformation from a decision-making perspective and discusses their practical implications for managers.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4740
Author(s):  
Fabiano Bini ◽  
Andrada Pica ◽  
Laura Azzimonti ◽  
Alessandro Giusti ◽  
Lorenzo Ruinelli ◽  
...  

Artificial intelligence (AI) uses mathematical algorithms to perform tasks that require human cognitive abilities. AI-based methodologies, e.g., machine learning and deep learning, as well as the recently developed research field of radiomics have noticeable potential to transform medical diagnostics. AI-based techniques applied to medical imaging allow to detect biological abnormalities, to diagnostic neoplasms or to predict the response to treatment. Nonetheless, the diagnostic accuracy of these methods is still a matter of debate. In this article, we first illustrate the key concepts and workflow characteristics of machine learning, deep learning and radiomics. We outline considerations regarding data input requirements, differences among these methodologies and their limitations. Subsequently, a concise overview is presented regarding the application of AI methods to the evaluation of thyroid images. We developed a critical discussion concerning limits and open challenges that should be addressed before the translation of AI techniques to the broad clinical use. Clarification of the pitfalls of AI-based techniques results crucial in order to ensure the optimal application for each patient.


2019 ◽  
Author(s):  
Xia Huiyi ◽  
◽  
Nankai Xia ◽  
Liu Liu ◽  
◽  
...  

With the development of urbanization and the continuous development, construction and renewal of the city, the living environment of human beings has also undergone tremendous changes, such as residential community environment and service facilities, urban roads and street spaces, and urban public service formats. And the layout of the facilities, etc., and these are the real needs of people in urban life, but the characteristics of these needs or their problems will inevitably have a certain impact on the user's psychological feelings, thus affecting people's use needs. Then, studying the ways in which urban residents perceive changes in the living environment and how they perceive changes in psychology and emotions will have practical significance and can effectively assist urban management and builders to optimize the living environment of residents. This is also the long-term. One of the topics of greatest interest to urban researchers since then. In the theory of demand hierarchy proposed by American psychologist Abraham Maslow, safety is the basic requirement second only to physiological needs. So safety, especially psychological security, has become one of the basic needs of people in the urban environment. People's perception of the psychological security of the urban environment is also one of the most important indicators in urban environmental assessment. In the past, due to the influence of technical means, the study of urban environmental psychological security often relied on the limited investigation of a small number of respondents. Low-density data is difficult to measure the perceptual results of universality. With the leaping development of the mobile Internet, Internet image data has grown geometrically over time. And with the development of artificial intelligence technology in recent years, image recognition and perception analysis based on machine learning has become possible. The maturity of these technical conditions provides a basis for the study of the urban renewal index evaluation system based on psychological security. In addition to the existing urban visual street furniture data obtained through urban big data collection combined with artificial intelligence image analysis, this paper also proposes a large number of urban living environment psychological assessment data collection strategies. These data are derived from crowdsourcing, and the collection method is limited by the development of cost and technology. At present, the psychological security preference of a large number of users on urban street images is collected by forced selection method, and then obtained by statistical data fitting to obtain urban environmental psychology. Security sense training set. In the future, when the conditions are mature, the brainwave feedback data in the virtual reality scene can be used to carry out the machine learning of psychological security, so as to improve the accuracy of the psychological security data.


2018 ◽  
Vol 15 (3) ◽  
pp. 497-498 ◽  
Author(s):  
Ruth C. Carlos ◽  
Charles E. Kahn ◽  
Safwan Halabi

Author(s):  
Frances Shaw

This paper situates a discussion of Her within contemporary developments in empathic machine learning for mental health treatment and therapy. Her simultaneously hooks into and critiques a particular imaginary about what artificial intelligence can do when combined with big data. Shaw threads the representation of empathy and artificial intelligence in the film into discussions of contemporary mental health research, in particular possibilities for the automation of treatment, whether through machine learning or guided interventions. Her provides some useful ways to think through utopian, dystopian, and ambivalent readings of such applications of technology in a broader sense, raising questions about sincerity and loss of human connectivity, relational ethics and automated empathy.


Author(s):  
Fernando Enrique Lopez Martinez ◽  
Edward Rolando Núñez-Valdez

IoT, big data, and artificial intelligence are currently three of the most relevant and trending pieces for innovation and predictive analysis in healthcare. Many healthcare organizations are already working on developing their own home-centric data collection networks and intelligent big data analytics systems based on machine-learning principles. The benefit of using IoT, big data, and artificial intelligence for community and population health is better health outcomes for the population and communities. The new generation of machine-learning algorithms can use large standardized data sets generated in healthcare to improve the effectiveness of public health interventions. A lot of these data come from sensors, devices, electronic health records (EHR), data generated by public health nurses, mobile data, social media, and the internet. This chapter shows a high-level implementation of a complete solution of IoT, big data, and machine learning implemented in the city of Cartagena, Colombia for hypertensive patients by using an eHealth sensor and Amazon Web Services components.


Sign in / Sign up

Export Citation Format

Share Document